Advertisement

Parameter Determination for Energy Balance Models with Memory

  • Piermarco CannarsaEmail author
  • Martina Malfitana
  • Patrick Martinez
Chapter
  • 33 Downloads
Part of the Springer INdAM Series book series (SINDAMS, volume 38)

Abstract

In this paper, we study two Energy Balance Models with Memory arising in climate dynamics, which consist in a 1D degenerate nonlinear parabolic equation involving a memory term, and possibly a set-valued reaction term (of Sellers type and of Budyko type, in the usual terminology). We provide existence and regularity results, and obtain uniqueness and stability estimates that are useful for the determination of the insolation function in Sellers’ model with memory.

Keywords

Parameter determination Energy balance models Degenerate Parabolic equations 

Notes

Acknowledgements

This research was partly supported by Istituto Nazionale di Alta Matematica through the European Research Group GDRE CONEDP. The authors acknowledge the MIUR Excellence Department Project awarded to the Department of Mathematics, University of Rome Tor Vergata, CUP E83C18000100006. The authors also wish to thank K. Fraedrich for a very interesting discussion on the question of Energy Balance Models with Memory, and M. Ghil for inspiring remarks.

References

  1. 1.
    Bensoussan, A., Da Prato, G., Delfour, M.C., Mitter, S.K.: Representation and control of infinite-dimensional systems. In: Systems and Control: Foundations and Applications, vol. 1. Birkhauser, Boston (1992)Google Scholar
  2. 2.
    Bhattacharya, K., Ghil, M., Vulis, I.L.: Internal variability of an energy-balance model with delayed albedo effects. J. Atmos. Sci. 39, 1747–1773 (1982)CrossRefGoogle Scholar
  3. 3.
    Bódai, T., Lucarini, V., Lunkeit, F., Boschi, R.: Global instability in the Ghil-Sellers model. Clim. Dyn. 44, 3361–3381 (2015)CrossRefGoogle Scholar
  4. 4.
    Budyko, M.I.: The effect of solar radiation variations on the climate of the Earth. Tellus 21(5), 611–619 (1969)CrossRefGoogle Scholar
  5. 5.
    Campiti, M., Metafune, G., Pallara, D.: Degenerate self-adjoint evolution equations on the unit interval. Semigroup Forum 57, 1–36 (1998)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Cannarsa, P., Martinez, P., Vancostenoble, J.: Null controllability of degenerate heat equations. Adv. Differ. Equ. 10(2), 153–190 (2005)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Cannarsa, P., Martinez, P., Vancostenoble, J.: Carleman estimates for a class of degenerate parabolic operators. SIAM J. Control Optim. 47(1), 1–19 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cannarsa, P., Rocchetti, D., Vancostenoble, J.: Generation of analytic semi-groups in L 2 for a class of second order degenerate elliptic operators. Control Cybern. 37(4), 831–878 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cannarsa, P., Martinez, P., Vancostenoble, J.: Global Carleman Estimates for Degenerate Parabolic Operators with Applications. Memoirs of the American Mathematical Society, vol. 239, no. 1133. American Mathematical Society, Providence, RI (2016)Google Scholar
  10. 10.
    Cannarsa, P., Floridia, G., Khapalov, A.Y.: Multiplicative controllability for semilinear reaction-diffusion equations with finitely many changes of sign. J. Math. Pures Appl. 108(4), 425–458 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cristofol, M., Roques, L.: Stable estimation of two coefficients in a nonlinear Fisher-KPP equation. Inverse Prob. 29(9), 095007, 18 pp. (2013)Google Scholar
  12. 12.
    Diaz, J.I.: Mathematical analysis of some diffusive energy balance models in climatology. In: Diaz, J.I., Lions, J.L. (eds.) Mathematics, Climate and Environment, pp. 28–56. Masson, Paris (1993)zbMATHGoogle Scholar
  13. 13.
    Diaz, J.I.: On the mathematical treatment of energy balance climate models. In: The Mathematics of Models for Climatology and Environment. NATO ASI Series. Series I: Global Environmental Change, vol. 48. Springer, Berlin (1997)Google Scholar
  14. 14.
    Diaz, J.I.: Diffusive energy balance models in climatology. In: Studies in Mathematics and its Applications, vol. 31. North-Holland, Amsterdam (2002)Google Scholar
  15. 15.
    Diaz, J.I., Hetzer, G.: A functional quasilinear reaction-diffusion equation arising in climatology. In: Équations aux dérivées partielle et applications. Articles dédiés à J.L. Lions, pp. 461–480. Elsevier, Paris (1998)Google Scholar
  16. 16.
    Diaz, J.I., Tello, L.: A nonlinear parabolic problem on a Riemannian manifold without boundary arising in climatology. Collect. Math. 50, 19–51 (1997)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Diaz, J.I., Hetzer, G., Tello, L.: An energy balance climate model with hysteresis. Nonlinear Anal. 64, 2053–2074 (2006)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Floridia, G.: Approximate controllability of nonlinear degenerate parabolic equations governed by bilinear control. J. Differ. Equ. 257(9), 3382–3422 (2014)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Floridia, G., Nitsch, C., Trombetti, C.: Multiplicative controllability for nonlinear degenerate parabolic equations between sign-changing states. ESAIM COCV.  https://doi.org/10.1051/cocv/2019066
  20. 20.
    Fraedrich, K.: Structural and stochastic analysis of a zero-dimensional climate system. Q. J. R. Meteorol. Soc. 104, 461–474 (1978)CrossRefGoogle Scholar
  21. 21.
    Fraedrich, K.: Catastrophes and resilience of a zero-dimensional climate system with ice-albedo and greenhouse feedback. Q. J. R. Meteorol. Soc. 105, 147–167 (1979)CrossRefGoogle Scholar
  22. 22.
    Ghil, M.: Climate stability for a Sellers-type model. J. Atmos. Sci. 33, 3–20 (1976)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ghil, M., Childress, S.: Topics in Geophysical Fluid Dynamics: Atmosphere Dynamics, Dynamo Theory, and Climate Dynamics. Springer, New York (1987)CrossRefGoogle Scholar
  24. 24.
    Guerrero, S., Imanuvilov, O.Y.: Remarks on non controllability of the heat equation with memory. ESAIM COCV 19, 288–300 (2013)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Held, I.M., Suarez, M.J.: Simple albedo feedback models of the ice caps. Tellus 26, 613–629 (1974)CrossRefGoogle Scholar
  26. 26.
    Hetzer, G.: Global existence, uniqueness, and continuous dependence for a reaction-diffusion equation with memory. Electron. J. Diff. Equ. 5, 1–16 (1996)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Hetzer, G.: The number of stationary solutions for a one-dimensional Budyko-type climate model. Nonlinear Anal. Real World Appl. 2, 259–272 (2001)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Hetzer, G.: Global existence for a functional reaction-diffusion problem from climate modeling. Discrete Contin. Dyn. Syst. 31, 660–671 (2011)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Imanuvilov, O.Y., Yamamoto, M.: Lipschitz stability in inverse parabolic problems by the Carleman estimates. Inverse Prob. 14(5), 1229–1245 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lenton, T.M., Held, H., Kriegler, E., Hall, J.W., Lucht, W., Rahmstorf, S., Schellnhuber, H.J.: Tipping elements in the Earth’s climate system. Proc. Nath. Acad. Sci. U. S. A. 105, 1786–1793 (2008)CrossRefGoogle Scholar
  31. 31.
    Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. 1 (French). Travaux et recherches mathématiques, No. 17. Dunod, Paris (1968)Google Scholar
  32. 32.
    Martinez, P., Tort, J., Vancostenoble, J.: Lipschitz stability for an inverse problem for the 2D-Sellers model on a manifold. Riv. Mat. Univ. Parma 7, 351–389 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    North, G.R., Mengel, J.G., Short, D.A.: Simple energy balance model resolving the season and continents: applications to astronomical theory of ice ages. J. Geophys. Res. 88, 6576–6586 (1983)CrossRefGoogle Scholar
  34. 34.
    Pandolfi, L.: Riesz systems, spectral controllability and a source identification problems for heat equation with memory. Discrete Contin. Dyn. Syst. 4(3), 745–759 (2011)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Applied Mathematical Sciences. Springer, New York (1983)Google Scholar
  36. 36.
    Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (2012)zbMATHGoogle Scholar
  37. 37.
    Roques, L., Cristofol, M.: On the determination of the nonlinearity from localized measurements in a reaction-diffusion equation. Nonlinearity 23(3), 675–686 (2010)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Roques, L., Checkroun, M.D., Cristofol, M., Soubeyrand, S., Ghil, M.: Determination and estimation of parameters in energy balance models with memory. Proc. R. Soc. A 470, 20140349 (2014)CrossRefGoogle Scholar
  39. 39.
    Sellers, W.D.: A global climatic model based on the energy balance of the earth-atmosphere system. J. Appl. Meteorol. 8(3), 392–400 (1969)CrossRefGoogle Scholar
  40. 40.
    Tanabe, H.: On the equations of evolution in a Banach space. Osaka Math. J. 12(2), 363–376 (1960)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Tao, Q., Bao, H.: On the null controllability of heat equation with memory. J. Math. Anal. Appl. 440, 1–13 (2016)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Tort, J., Vancostenoble, J.: Determination of the insolation function in the nonlinear climates Sellers model. Ann. I. H. Poincaré 29, 683–713 (2012)CrossRefGoogle Scholar
  43. 43.
    Vrabie, I.I.: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics. Longman Scientific & Technical, Essex (1987)Google Scholar
  44. 44.
    Walsh, J., Rackauckas, C.: On the Budyko-Sellers energy balance energy climate model with ice line coupling. Discrete Contin. Dyn. Syst. B 20, 2187–2216 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Zaliapin, I., Ghil, M.: Another look at climate sensitivity. Nonlinear Process. Geophys. 17, 113–122 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Piermarco Cannarsa
    • 1
    Email author
  • Martina Malfitana
    • 1
  • Patrick Martinez
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “Tor Vergata”RomaItaly
  2. 2.Institut de Mathématiques de Toulouse, UMR 5219Université de Toulouse, CNRS UPS IMTToulouseFrance

Personalised recommendations