Advertisement

General Multidimensional Fractional Iyengar Inequalities

  • George A. AnastassiouEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 886)

Abstract

Here we derive a variety of general multivariate fractional Iyengar type inequalities for not necessarily radial functions defined on the shell and ball.

References

  1. 1.
    T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G.A. Anastassiou, Fractional Differentiation Inequalities, Research Monograph (Springer, New York, 2009)CrossRefGoogle Scholar
  3. 3.
    G.A. Anastassiou, On right fractional calculus. Chaos Solitons Fractals 42, 365–376 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    G.A. Anastassiou, Intelligent Mathematical Computational Analysis (Springer, Heidelberg, New York, 2011)Google Scholar
  5. 5.
    G.A. Anastassiou, Mixed Conformable Fractional Approximation by Sublinear Operators. Indian J. Math. 60(1), 107–140 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    G.A. Anastassiou, Canavati fractional Iyengar type inequalities, Analele Universitatii Oradea, Fasc. Matematica, Tom XXVI 1, 141–151 (2019)zbMATHGoogle Scholar
  7. 7.
    G.A. Anastassiou, General Multidimensional Fractional Iyengar type inequalities, Revista De la Real Academia de Ciencias Exactas. Fisicasy Naturales Serie A. Matematicas (RACSAM) 113(3), 2537–2573 (2019)Google Scholar
  8. 8.
    G.A. Anastassiou, Caputo fractional Iyengar type inequalities, submitted (2018)Google Scholar
  9. 9.
    G.A. Anastassiou, Conformable fractional Iyengar type inequalities, submitted (2018)Google Scholar
  10. 10.
    J.A. Canavati, The Riemann-Liouville Integral. Nieuw Archief Voor Wiskunde 5(1), 53–75 (1987)MathSciNetzbMATHGoogle Scholar
  11. 11.
    K.S.K. Iyengar, Note on an inequality. Math. Stud. 6, 75–76 (1938)zbMATHGoogle Scholar
  12. 12.
    W. Rudin, Real and Complex Analysis, International Student edn. (Mc Graw Hill, London, 1970)Google Scholar
  13. 13.
    D. Stroock, A Concise Introduction to the Theory of Integration, 3rd edn. (Birkhaüser, Boston, Basel, Berlin, 1999)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations