Advertisement

Local Fractional Taylor Formula

  • George A. AnastassiouEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 886)

Abstract

Here we derive an appropriate local fractional Taylor formula. We provide a complete description of the formula. See also [3].

References

  1. 1.
    F.B. Adda, J. Cresson, About non-differential functions. J. Math. Anal. Appl. 263, 721–737 (2001)MathSciNetCrossRefGoogle Scholar
  2. 2.
    F.B. Adda, J. Cresso, Fractional differential equations and the schrödinger equation. Appl. Math. Comput. 161, 323–345 (2005)MathSciNetGoogle Scholar
  3. 3.
    G.A. Anastassiou, Local fractional taylor formula. J. Comput. Anal. Appl. 28(4), 709–713 (2020)Google Scholar
  4. 4.
    K.M. Kolwankar, Local fractional calculus: a review. arXiv: 1307:0739v1 [nlin.CD] 2 Jul 2013
  5. 5.
    K.M. Kolwankar, A.D. Gangal, Local fractional calculus: a calculus for fractal space-time, Fractals: Theory and Applications in Engineering (Springer, London, 1999), pp. 171–181CrossRefGoogle Scholar
  6. 6.
    I. Podlubny, Fractional Differential Equations (Academic, San Diego, 1999)zbMATHGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations