Choquet Integral Analytical Type Inequalities

  • George A. AnastassiouEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 886)


Based on an amazing result of Sugeno [16], we are able to transfer classic analytic integral inequalities to Choquet integral setting. We give Choquet integral inequalities of the following types: fractional-Polya, Ostrowski, fractional Ostrowski, Hermite–Hadamard, Simpson and Iyengar. We provide several examples for the involved distorted Lebesgue measure. See also [5].


  1. 1.
    G.A. Anastassiou, Fractional Differentiation Inequalities (Springer, Heidelberg, 2009)Google Scholar
  2. 2.
    G.A. Anastassiou, On right fractional calculus. Chaos, Solitons Fractals 42, 365–376 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    G.A. Anastassiou, Advances on Fractional Inequalities (Springer, Heidelberg, 2009)CrossRefGoogle Scholar
  4. 4.
    G.A. Anastassiou, Intelligent Comparisons: Analytic Inequalities (Springer, Heidelberg, 2016)CrossRefGoogle Scholar
  5. 5.
    G.A. Anastassiou, Choquet Integral Analytic Inequalities, Studia Mathematica Babes Bolyai (2018)Google Scholar
  6. 6.
    J.A. Canavati, The Riemann-Liouville integral. Nieuw Archief Voor Wiskunde 5(1), 53–75 (1987)MathSciNetzbMATHGoogle Scholar
  7. 7.
    G. Choquet, Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953)MathSciNetCrossRefGoogle Scholar
  8. 8.
    D. Denneberg, Non-additive Measure and Integral (Kluwer Academic Publishers, Boston, 1994)CrossRefGoogle Scholar
  9. 9.
    K. Diethelm, The Analysis of Fractional Differentiation Equations (Springer, Heidelberg, 2010)CrossRefGoogle Scholar
  10. 10.
    G.S. Frederico, D.F.M. Torres, Fractional optimal control in the sense of caputo and the fractional Noether’s theorem. Int. Math. Forum 3(10), 479–493 (2008)MathSciNetzbMATHGoogle Scholar
  11. 11.
    K.S.K. Iyengar, Note on an inequality. Math. Student 6, 75–76 (1938)zbMATHGoogle Scholar
  12. 12.
    A. Ostrowski, Über die Absolutabweichung einer differentiebaren Funktion von ihrem Integralmittelwert. Comment. Math. Helv. 10, 226–227 (1938)CrossRefGoogle Scholar
  13. 13.
    G. Polya, Ein mittelwertsatz für Funktionen mehrerer Veränderlichen. Tohoku Math. J. 19, 1–3 (1921)zbMATHGoogle Scholar
  14. 14.
    G. Polya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. I (Springer, Berlin, 1925). (German)CrossRefGoogle Scholar
  15. 15.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Amsterdam, 1993) [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)]Google Scholar
  16. 16.
    M. Sugeno, A note on derivatives of functions with respect to fuzzy measures. Fuzzy Sets Syst. 222, 1–17 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations