Advertisement

Choquet–Iyengar Advanced Inequalities

  • George A. AnastassiouEmail author
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 886)

Abstract

Here we extend advanced known Iyengar type inequalities to Choquet integrals setting with respect to distorted Lebesgue measures and for monotone functions. See also [2].

References

  1. 1.
    R.P. Agarwal, S.S. Dragomir, An application of Hayashi’s inequality for differentiable functions. Comput. Math. Appl. 6, 95–99 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    G. Anastassiou, Choquet-Iyengar type advanced inequalities. J. Comput. Anal. Appl. 28(1), 166–179 (2020)Google Scholar
  3. 3.
    G. Anastassiou, Choquet integral analytic inequalities. Studia Mathematica Babes-Bolyai, accepted for publication (2018)Google Scholar
  4. 4.
    X.-L. Cheng, The Iyengar-type inequality. Appl. Math. Lett. 14, 975–978 (2001)MathSciNetCrossRefGoogle Scholar
  5. 5.
    G. Choquet, Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953)MathSciNetCrossRefGoogle Scholar
  6. 6.
    D. Denneberg, Non-additive Measure and Integral (Kluwer Academic Publishers, Boston, 1994)CrossRefGoogle Scholar
  7. 7.
    I. Franjic, J. Pecaric, I. Peric, Note on an Iyengar type inequality. Appl. Math. Lett. 19, 657–660 (2006)MathSciNetCrossRefGoogle Scholar
  8. 8.
    K.S.K. Iyengar, Note on an inequality. Math. Stud. 6, 75–76 (1938)zbMATHGoogle Scholar
  9. 9.
    Z. Liu, Note on Iyengar’s inequality. Univ. Beograde Publ. Elektrotechn. Fak. Ser. Mat. 16, 29–35 (2005)Google Scholar
  10. 10.
    F. Qi, Further generalizations of inequalities for an integral. Univ. Beograd Publ. Elektrotechn. Fak. Ser. Mat. 8, 79–83 (1997)Google Scholar
  11. 11.
    M. Sugeno, A note on derivatives of functions with respect to fuzzy measures. Fuzzy Sets Syst. 222, 1–17 (2013)MathSciNetCrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations