Advertisement

Gears pp 1-72 | Cite as

Load Carrying Capacity of Spur and Helical Gears: Influence Factors and Load Analysis

  • Vincenzo Vullo
Chapter
  • 75 Downloads
Part of the Springer Series in Solid and Structural Mechanics book series (SSSSM, volume 11)

Abstract

In this chapter, the main factors (application factor, dynamic factor, face load factors and transverse load factors) that influence the load carrying capacity of spur and helical gears are first defined. The various methods of calculating all these factors are then described, focusing attention on the main quantities they depend on and how to take them into account. In this framework, various problems are addressed, such as: resonance problems, to this end defining the possible operating ranges of a gear pair in relation to its natural frequency; stiffness problems, in this regard defining and quantifying the various stiffnesses that come into play; numerous sources of misalignment, related to the inevitable manufacturing and assembly errors and to torsion and bending elastic deflections under load of the structural members involved; beneficial effects of running-in and intentional profile and flank line modifications; etc. Finally, the focus is on load distribution between teeth pairs in simultaneous meshing and load variability defined by any load spectrum.

References

  1. Almen JO, Black PH (1963) Residual stresses and fatigue in metals. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  2. Attorri R, Salvini P, Vivio F, Vullo V (2001) A mixed finite element—numerical solution for mesh stiffnesses evaluation. In: MPT 2001—FUKUOCA, The JSME international conference on motion and power transmissions, Fukuoca, Japan, 15–17 Nov, GDN-10, vol I, pp 51–56Google Scholar
  3. Biezeno CB, Grammel R (1953) Technische Dynamik: Dampfturbinen und Brennkraftmaschinen, Zweiter Band, Zweite Erweiterte Auflage. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  4. Buckingham E (1949) Analytical mechanics of gears. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  5. Buzdugan G (1964) La Measure des Vibrations Mécaniques. Eyrolles Éditeur, ParisGoogle Scholar
  6. Calderale PM, Regalzi G, Vullo V (1984) Lo smorzamento interno dei materiali metallici da costruzione, Seminario sui Problemi di Smorzamento delle Vibrazioni nei Materiali, nelle Strutture e nelle Macchine, Atti della Giornata per la Presentazione del Premio Agostino A. Capocaccia, Genova, 30 MayGoogle Scholar
  7. Cantone C, Cantone L, Salvini P, Vullo V (2004) Valutazione della Variabilità della Rigidezza d’Ingranamento lungo la Linea di Contatto negli Ingranaggi Elicoidali, Atti XXXIII Convegno AIAS e XIV Convegno ADM Innovazione nella Progettazione Industriale, Bari, 31 agosto - 2 settembreGoogle Scholar
  8. Cantone L, Salvini P, Vullo V (2001) A general dynamic modelling procedure for power gear transmission. In: MPT 2001—FUKUOCA, The JSME international conference on motion and power transmissions, Fukuoca, Japan, 15–17 Nov, GDN-19, vol I, pp 102–108Google Scholar
  9. Carmignani C (2001) Dinamica Strutturale. Edizioni ETS, PisaGoogle Scholar
  10. Chirone E, Vullo V (1979) Cuscinetti a Strisciamento. Libreria Editrice Universitaria Levrotto&Bella, TorinoGoogle Scholar
  11. Cook RD (1981) Concepts and applications of finite element analysis, 2nd edn. Wiley, New YorkzbMATHGoogle Scholar
  12. Den Hartog JP (1985) Mechanical vibrations. Dover Publications Inc, New YorkzbMATHGoogle Scholar
  13. Dudley DW (1962) Gear handbook. the design, manufacture, and application of gears. McGraw-Hill Book Company, Inc., New YorkGoogle Scholar
  14. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34CrossRefGoogle Scholar
  15. Ferrari C, Romiti A (1966) Meccanica Applicata alle Macchine. Unione Tipografica–Editrice Torinese (UTET), TorinoGoogle Scholar
  16. Garro A, Vullo V (1979) Acoustic problems of vehicle transmission, Nauka I Motorna Vozila ’79, Bled, Slovenija, Jugoslavija, 4–7 JuneGoogle Scholar
  17. Garro A, Vullo V (1978a) Alcune considerazioni sul proporzionamento degli ingranaggi, Atti del VI Convegno Nazionale AIAS, Brescia, 22–24 JuneGoogle Scholar
  18. Garro A, Vullo V (1978b) Note integrative sulla memoria: Alcune considerazioni sul proporzionamento degli ingranaggi, Atti del VI Convegno Nazionale AIAS, Vol. II, Discussioni, Brescia, 22–24 JuneGoogle Scholar
  19. Géradin M, Rixen DJ (2015) Mechanical vibrations: theory and application to structural dynamics, 3rd edn. Wiley, Chichester, UKGoogle Scholar
  20. Giovannozzi R (1965a) Costruzione di Macchine, vol I, 2nd revised and expanded edn. Casa Editrice Prof. Riccardo Pàtron, BolognaGoogle Scholar
  21. Giovannozzi R (1965b) Costruzione di Macchine, vol II, 4th edn. Casa Editrice Prof. Riccardo Pàtron, BolognaGoogle Scholar
  22. Henriot G (1979) Traité théorique et pratique des engrenages, vol 1, 6th edn. Bordas, ParisGoogle Scholar
  23. Hertz HR (1882) Über die Berührung fester elastischer Körper. Journal für Reine und Angewandte Mathematik (Crelle’s J.) 92:156–171Google Scholar
  24. Heywood RB (1962) Designing against fatigue. Chapman & Hall Ltd, LondonGoogle Scholar
  25. Houser DR, Seireg A (1970) An experimental investigation of dynamic factors in spur and helical gears. Trans ASME Ser B J Eng. Ind 92:495–503CrossRefGoogle Scholar
  26. ISO 1328-1:2013 Cylindrical gears-ISO system of flank tolerance classification-Part 1: definitions and allowable values of deviations relevant to flanks of gear teethGoogle Scholar
  27. ISO 53:1998 Cylindrical gears for general and for heavy engineering—standard basic rack tooth profileGoogle Scholar
  28. ISO 6336-1:2006 Calculation of load capacity of spur and helical gears—Part 1: basic principles, introduction and general influence factorsGoogle Scholar
  29. ISO 6336-6:2006 Calculation of load capacity of spur and helical gears—Part 6: calculation of service life under variable loadGoogle Scholar
  30. ISO 10825:1995 Gears—wear and damage to gear teeth—terminologyGoogle Scholar
  31. Jaramillo TJ (1950) Deflections and moments due to a concentrated load on a cantilever plate of infinite length. Trans ASME Ser E J Appl Mech 17:67–72MathSciNetzbMATHGoogle Scholar
  32. JGMA 7001-01 (1990) Terms of gear tooth failure modesGoogle Scholar
  33. Jia C, Fang ZD, Zhang XJ, Yang XH (2018) Optimum design and analysis of helical gear tooth profile modification. J Huazhong Univ Sci Technol 46(5):66–71 (Natural Science Edition)Google Scholar
  34. JIS B0160 (1999) Gears—wear and damage to gear teeth—terminologyGoogle Scholar
  35. Juvinall RC (1967) Stress, strain, and strength. McGraw-Hill Book Company, New YorkGoogle Scholar
  36. Kagawa T (1961) Deflections and moments due to a concentrated edge-load on a cantilever plate of infinite length. In: Proceedings of 11th Jap. Nat. Congr. Appl. Mech., pp 47–52Google Scholar
  37. Karas F (1941) Elastische Formänderung und Lastverteilung beim Doppeleingriff gerader Stirnradzähne, VDI – Forschungheft 406, B, Bd. 12Google Scholar
  38. Ker Wilson W (1956) Practical solution of torsional vibration problems, vol I. Chapman and Hall, LondonzbMATHGoogle Scholar
  39. Ker Wilson W (1963) Practical solution of torsional vibration problems, vol II. Chapman and Hall, LondonzbMATHGoogle Scholar
  40. Krall G (1970a) Meccanica Tecnica delle Vibrazioni: Parte Prima Sistemi Discreti. Eredi Virgilio Veschi, RomaGoogle Scholar
  41. Krall G (1970b) Meccanica Tecnica delle Vibrazioni: Parte Seconda Sistemi Continui. Eredi Virgilio Veschi, RomaGoogle Scholar
  42. Lazan BJ (1968) Damping of materials and members in structural mechanics. Pergamon Press, OxfordGoogle Scholar
  43. Li S, Kahraman A (2013) A tribo-dynamic model for a spur gear pair. J Sound Vib 332:4963–4978CrossRefGoogle Scholar
  44. Love AEH (1944) A treatise on the mathematical theory of elasticity, 4th edn. Dover Publications Inc, New YorkzbMATHGoogle Scholar
  45. Maitra GM (1994) Handbook of gear design, 2nd edn. Tata McGraw-Hill Publishing Company Ltd, New DelhiGoogle Scholar
  46. Marguerre K, Wölfer K (1979) Mechanics of vibration. Sijthoff & Noordhoff, Alphen aan den Rijn, The NetherlandsGoogle Scholar
  47. Merritt HE (1971) Gear Engineering. Sir Isaac Pitman & Sons Ltd, LondonGoogle Scholar
  48. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12:A159–A164Google Scholar
  49. Niemann G, Winter H (1983) Maschinen-Elemente, Band II: Getriebe allgemein, Zahradgetriebe-Grundlagen, Stirnradgetriebe. Springer, BerlinGoogle Scholar
  50. Orban F (2011) Damping of materials and members in structures. J Phys Conf Ser 268 (1)Google Scholar
  51. Palmgren A (1924) Die Lebensdauer von Kugellagern. Verfahrenstechinik 68:339–341 (Berlin)Google Scholar
  52. Panetti M (1937) Lezioni di Meccanica Applicata alle Macchine, Parte II, Ruote-Roteggi-Macchine Funicolari-Cingoli. Arti Grafiche Pozzo, TorinoGoogle Scholar
  53. Pollone G (1970) Il Veicolo. Libreria Editrice Universitaria Levrotto & Bella, TorinoGoogle Scholar
  54. Radaj D, Vormwald M (2013) Advanced method of fatigue assessment. Springer International Publishing AG, HeidelbergCrossRefGoogle Scholar
  55. Radzevich SP (2016) Dudley’s handbook of practical gear design and manufacture, 3rd edn. CRC Press, Taylor&Francis Group, Boca Raton, FLCrossRefGoogle Scholar
  56. Roda-Casanova V, Sanchez-Marin FT, Gonzalez-Perez I, Iserte JL, Fuentes A (2013) Determination of the ISO face load factor in spur gear drives by the finite element modelling of gears and shaft. Mech Mach Theor 65:1–13CrossRefGoogle Scholar
  57. Sanchez MB, Pleguezuelos M, Pedrero JI (2019) Influence of profile modifications on meshing stiffness, load sharing, and transmission error of involute spur gears. Mech Mach Theor 139:506–525CrossRefGoogle Scholar
  58. Schijve J (2009) Fatigue of structures and materials. Springer International Publishing AG, HeidelbergCrossRefzbMATHGoogle Scholar
  59. Scotto Lavina G (1990) Riassunto delle Lezioni di Meccanica Applicata alle Macchine: Cinematica Applicata, Dinamica Applicata - Resistenze Passive - Coppie Inferiori, Coppie Superiori (Ingranaggi – Flessibili – Freni). Edizioni Scientifiche SIDEREA, RomaGoogle Scholar
  60. Seireg A, Houser DR (1970) Evaluation of dynamic factors for spur and helical gears. Trans ASME Ser B J Eng Ind 92:504–515CrossRefGoogle Scholar
  61. Shipley EE (1967) Gear failures: how to recognize them, what causes them, how to avoid them. Machine Design, Dec 7Google Scholar
  62. Sors L (1971) Fatigue design of machine components. Pergamon Press Ltd, OxfordGoogle Scholar
  63. Spitas V, Spitas C (2007) Optimizing involute gear design for maximum bending strength and equivalent pitting resistance. Proc Inst Mech Eng Part C J Mech Eng Sci 221(4):479–488CrossRefzbMATHGoogle Scholar
  64. Stephens RI, Fatemi A, Stephens RR, Fuchs HO (2000) Metal fatigue in engineering, 2nd edn. Wiley, New YorkGoogle Scholar
  65. Tenot A (1953) Measure des Vibrations et Isolation des Assises de Machines. Dunod, ParisGoogle Scholar
  66. Thomson WT (1965) Vibration theory and applications. Prentice-Hall, Inc., Upper Saddle River, NJGoogle Scholar
  67. Timoshenko SP, Goodier JN (1951) Theory of elasticity. McGraw-Hill Book Company Inc, New YorkzbMATHGoogle Scholar
  68. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill International Editions, SingaporezbMATHGoogle Scholar
  69. Timoshenko SP, Young DH (1951) Engineering mechanics. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  70. Townsend DP (1991) Dudley’s gear handbook. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  71. Velex P, Maatar M (1996) A mathematical model for analyzing the influence on shape deviations and mounting errors on gear dynamic behavior. J Sound Vib 191(5):629–660CrossRefGoogle Scholar
  72. Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. Marcel Dekker, Inc, New YorkCrossRefGoogle Scholar
  73. Vijayakar S (1991) A combined surface integral and finite element solution for a three-dimensional contact problem. Int J Numer Method Eng 31:525–545CrossRefzbMATHGoogle Scholar
  74. Vullo V (2014) Circular cylinders and pressure vessels: stress analysis and design. Springer International Publishing Switzerland, HeidelbergCrossRefGoogle Scholar
  75. Warburton GB (1976) The dynamical behaviour of structures, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  76. Wellauer EJ, Seireg A (1960) Bending strength of the gear teeth by cantilever-plate theory. ASME J Eng Ind 82(3):213–220CrossRefGoogle Scholar
  77. Wöhler A (1870) Über die Festigkeitsversuche mit Eisen und Stahl. Zeitschrift für Bauwesen 20:73–106Google Scholar
  78. Winter H, Kojima M (1981) A study on the dynamics of geared system—estimation of overload on gears in system. In: International symposium on gearing & power transmissions, TokyoGoogle Scholar
  79. Zeleny V, Linkeova I, Sykora J, Skalnik P (2019) Mathematical approach to evaluate involute gear profile and helix deviations without using special gear software. Mech Mach Theor 135:150–164CrossRefGoogle Scholar
  80. Zienkiewicz OC (1977) The finite element method, 3rd edn. McGraw-Hill Higher Education, UKzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Vincenzo Vullo
    • 1
  1. 1.University of Rome “Tor Vergata”RomeItaly

Personalised recommendations