Advertisement

Migraine

  • Massimo Filippi
  • Maria A. Rocca
Chapter
  • 29 Downloads

Abstract

Migraine is one of the most common and disabling neurologic diseases worldwide. An increasing recognition of migraine has led to a growing interest in understanding its pathophysiology and developing new treatments. It is now widely accepted that migraine is not simply a disease related to pain occurring intermittently, but a more complex neurological condition. The migraine attack consists of different phases which, starting from the premonitory phase, give way to the pain phase and terminate in a postdromal phase. An aura phase is also present in around one-third of migraine patients. From the formerly popular vascular theory, which described migraine as a vascular disorder, the field has now moved to the neuronal theories involving either the peripheral or central nervous system, or both. There is ample evidence suggesting that in predisposed migraine patients the activation of different cortical, subcortical, and brainstem regions and the subsequent release of key neuropeptides can contribute to the onset of the attack. A better understanding of migraine biology has paved the way for the development of new migraine-specific and mechanism-based acute and preventive treatments.

References

  1. 1.
    GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1545–602.CrossRefGoogle Scholar
  2. 2.
    GBD 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18:459–80.CrossRefGoogle Scholar
  3. 3.
    Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: a disorder of sensory processing. Physiol Rev. 2017;97:553–622.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Lipton RB, Bigal ME, Diamond M, et al. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68:343–9.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Vetvik KG, MacGregor EA. Sex differences in the epidemiology, clinical features, and pathophysiology of migraine. Lancet Neurol. 2017;16:76–87.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Headache Classification Committee of the International Headache Society (IHS). The international classification of headache disorders, 3rd edition. Cephalalgia. 2018;38:1–211.Google Scholar
  7. 7.
    May A, Schulte LH. Chronic migraine: risk factors, mechanisms and treatment. Nat Rev Neurol. 2016;12:455–64.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lipton RB. Tracing transformation: chronic migraine classification, progression, and epidemiology. Neurology. 2009;72:S3–7.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Buse DC, Manack A, Serrano D, Turkel C, Lipton RB. Sociodemographic and comorbidity profiles of chronic migraine and episodic migraine sufferers. J Neurol Neurosurg Psychiatry. 2010;81:428–32.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ray BS, Wolff HG. Experimental studies on headache. Pain-sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–56.CrossRefGoogle Scholar
  11. 11.
    Hansen JM, Schankin CJ. Cerebral hemodynamics in the different phases of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):595–609.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Amin FM, Asghar MS, Hougaard A, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12:454–61.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Akerman S, Romero-Reyes M, Holland PR. Current and novel insights into the neurophysiology of migraine and its implications for therapeutics. Pharmacol Ther. 2017;172:151–70.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Hoffmann J, Baca SM, Akerman S. Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab. 2019;39(4):573–94.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol. 2014;1:1036–40.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Amin FM, Hougaard A, Schytz HW, et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain. 2014;137:779–94.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Charles A. The pathophysiology of migraine: implications for clinical management. Lancet Neurol. 2018;17:174–82.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Moskowitz MA. The neurobiology of vascular head pain. Ann Neurol. 1984;16:157–68.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Roon KI, Olesen J, Diener HC, et al. No acute antimigraine efficacy of CP-122,288, a highly potent inhibitor of neurogenic inflammation: results of two randomized, double-blind, placebo-controlled clinical trials. Ann Neurol. 2000;47:238–41.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Goldstein DJ, Offen WW, Klein EG, et al. Lanepitant, an NK-1 antagonist, in migraine prevention. Cephalalgia. 2001;21:102–6.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Puledda F, Messina R, Goadsby PJ. An update on migraine: current understanding and future directions. J Neurol. 2017;264:2031–9.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Maniyar FH, Sprenger T, Schankin C, Goadsby PJ. The origin of nausea in migraine-a PET study. J Headache Pain. 2014;15:84.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Schulte LH, May A. The migraine generator revisited: continuous scanning of the migraine cycle over 30 days and three spontaneous attacks. Brain. 2016;139:1987–93.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Weiller C, May A, Limmroth V, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658–60.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Maniyar FH, Sprenger T, Monteith T, Schankin C, Goadsby PJ. Brain activations in the premonitory phase of nitroglycerin-triggered migraine attacks. Brain. 2014;137:232–41.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47:1418–26.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Posterior cerebral hypoperfusion in migraine without aura. Cephalalgia. 2008;28:856–62.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Schulte LH, Allers A, May A. Hypothalamus as a mediator of chronic migraine: evidence from high-resolution fMRI. Neurology. 2017;88:2011–6.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Lerebours F, Boulanouar K, Barege M, et al. Functional connectivity of hypothalamus in chronic migraine with medication overuse. Cephalalgia. 2019;39:892–9.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Chen Z, Chen X, Liu M, Ma L, Yu S. Volume of hypothalamus as a diagnostic biomarker of chronic migraine. Front Neurol. 2019;10:606.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci. 2011;31:14204–17.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    de Tommaso M, Ambrosini A, Brighina F, et al. Altered processing of sensory stimuli in patients with migraine. Nat Rev Neurol. 2014;10:144–55.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Coppola G, Di Renzo A, Tinelli E, et al. Thalamo-cortical network activity during spontaneous migraine attacks. Neurology. 2016;87:2154–60.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Afridi SK, Giffin NJ, Kaube H, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62:1270–5.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Coppola G, Tinelli E, Lepre C, et al. Dynamic changes in thalamic microstructure of migraine without aura patients: a diffusion tensor magnetic resonance imaging study. Eur J Neurol. 2013;21:287.e13.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Magon S, May A, Stankewitz A, et al. Morphological abnormalities of thalamic subnuclei in migraine: a multicenter MRI study at 3 tesla. J Neurosci. 2015;35:13800–6.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Messina R, Rocca MA, Colombo B, et al. White matter microstructure abnormalities in pediatric migraine patients. Cephalalgia. 2015;35:1278.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Messina R, Filippi M, Goadsby PJ. Recent advances in headache neuroimaging. Curr Opin Neurol. 2018;31:379–85.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Tfelt-Hansen PC, Koehler PJ. One hundred years of migraine research: major clinical and scientific observations from 1910 to 2010. Headache. 2011;51:752–78.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Hadjikhani N, Sanchez Del Rio M, Wu O, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98:4687–92.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Arngrim N, Hougaard A, Ahmadi K, et al. Heterogenous migraine aura symptoms correlate with visual cortex functional magnetic resonance imaging responses. Ann Neurol. 2017;82:925–39.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gormley P, Anttila V, Winsvold BS, et al. Meta-analysis of 375,000 individuals identifies 38 susceptibility loci for migraine. Nat Genet. 2016;48:856–66.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Freilinger T, Anttila V, de Vries B, et al. Genome-wide association analysis identifies susceptibility loci for migraine without aura. Nat Genet. 2012;44:777–82.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Maniyar FH, Sprenger T, Monteith T, Schankin CJ, Goadsby PJ. The premonitory phase of migraine—what can we learn from it? Headache. 2015;55:609–20.PubMedCrossRefGoogle Scholar
  45. 45.
    Bose P, Goadsby PJ. The migraine postdrome. Curr Opin Neurol. 2016;29:299–301.PubMedCrossRefGoogle Scholar
  46. 46.
    Charles A. The evolution of a migraine attack—a review of recent evidence. Headache. 2013;53:413–9.PubMedCrossRefGoogle Scholar
  47. 47.
    Lai TH, Fuh JL, Wang SJ. Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. J Neurol Neurosurg Psychiatry. 2009;80:1116–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Karsan N, Goadsby PJ. Biological insights from the premonitory symptoms of migraine. Nat Rev Neurol. 2018;14:699–710.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Giffin NJ, Ruggiero L, Lipton RB, et al. Premonitory symptoms in migraine: an electronic diary study. Neurology. 2003;60:935–40.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Ong JJY, De Felice M. Migraine treatment: current acute medications and their potential mechanisms of action. Neurotherapeutics. 2018;15:274–90.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Kelman L. The triggers or precipitants of the acute migraine attack. Cephalalgia. 2007;27:394–402.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Schulte LH, Jurgens TP, May A. Photo-, osmo- and phonophobia in the premonitory phase of migraine: mistaking symptoms for triggers? J Headache Pain. 2015;16:14.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Giffin NJ, Lipton RB, Silberstein SD, Olesen J, Goadsby PJ. The migraine postdrome: an electronic diary study. Neurology. 2016;87:309–13.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Schankin CJ, Viana M, Goadsby PJ. Persistent and repetitive visual disturbances in migraine: a review. Headache. 2017;57:1–16.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Charles A. The migraine Aura. Continuum (Minneap Minn). 2018;24:1009–22.Google Scholar
  56. 56.
    Viana M, Sances G, Linde M, et al. Clinical features of migraine aura: results from a prospective diary-aided study. Cephalalgia. 2017;37:979–89.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Hansen JM, Baca SM, Vanvalkenburgh P, Charles A. Distinctive anatomical and physiological features of migraine aura revealed by 18 years of recording. Brain. 2013;136:3589–95.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Hansen JM, Goadsby PJ, Charles AC. Variability of clinical features in attacks of migraine with aura. Cephalalgia. 2016;36:216–24.PubMedCrossRefGoogle Scholar
  59. 59.
    Goadsby PJ. Unique migraine subtypes, rare headache disorders, and other disturbances. Continuum (Minneap Minn). 2015;21:1032–40.Google Scholar
  60. 60.
    Sutherland HG, Griffiths LR. Genetics of migraine: insights into the molecular basis of migraine disorders. Headache. 2017;57:537–69.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bigal ME, Lipton RB. Concepts and mechanisms of migraine chronification. Headache. 2008;48:7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Su M, Yu S. Chronic migraine: a process of dysmodulation and sensitization. Mol Pain. 2018;14:174480691876769.CrossRefGoogle Scholar
  63. 63.
    Silberstein SD. Practice parameter: evidence-based guidelines for migraine headache (an evidence-based review): report of the quality standards Subcommittee of the American Academy of Neurology. Neurology. 2000;55:754–62.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Sandrini G, Friberg L, Coppola G, et al. Neurophysiological tests and neuroimaging procedures in non-acute headache (2nd edition). Eur J Neurol. 2011;18:373–81.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Dodick DW. Pearls: headache. Semin Neurol. 2010;30:74–81.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Kruit MC, van Buchem MA, Hofman PA, et al. Migraine as a risk factor for subclinical brain lesions. JAMA. 2004;291:427–34.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Koppen H, Boele HJ, Palm-Meinders IH, et al. Cerebellar function and ischemic brain lesions in migraine patients from the general population. Cephalalgia. 2017;37:177–90.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Gaist D, Garde E, Blaabjerg M, et al. Migraine with aura and risk of silent brain infarcts and white matter hyperintensities: an MRI study. Brain. 2016;139:2015–23.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Uggetti C, Squarza S, Longaretti F, et al. Migraine with aura and white matter lesions: an MRI study. Neurol Sci. 2017;38:11–3.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Rocca MA, Messina R, Colombo B, Falini A, Comi G, Filippi M. Structural brain MRI abnormalities in pediatric patients with migraine. J Neurol. 2014;261(2):350–7.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Tortorella P, Rocca MA, Colombo B, Annovazzi P, Comi G, Filippi M. Assessment of MRI abnormalities of the brainstem from patients with migraine and multiple sclerosis. J Neurol Sci. 2006;244:137–41.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Kruit MC, Launer LJ, Ferrari MD, van Buchem MA. Infarcts in the posterior circulation territory in migraine. The population-based MRI CAMERA study. Brain. 2005;128:2068–77.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Hougaard A, Amin FM, Ashina M. Migraine and structural abnormalities in the brain. Curr Opin Neurol. 2014;27:309–14.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Honningsvag LM, Haberg AK, Hagen K, Kvistad KA, Stovner LJ, Linde M. White matter hyperintensities and headache: a population-based imaging study (HUNT MRI). Cephalalgia. 2018;38:1927–39.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Yalcin A, Ceylan M, Bayraktutan OF, Akkurt A. Episodic migraine and white matter hyperintensities: association of pain lateralization. Pain Med. 2018;19(10):2051–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Zhang Q, Datta R, Detre JA, Cucchiara B. White matter lesion burden in migraine with aura may be associated with reduced cerebral blood flow. Cephalalgia. 2017;37:517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Lee MJ, Park BY, Cho S, Park H, Chung CS. Cerebrovascular reactivity as a determinant of deep white matter hyperintensities in migraine. Neurology. 2019;92:e342–50.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Colombo B, Dalla Libera D, Comi G. Brain white matter lesions in migraine: what’s the meaning? Neurol Sci. 2011;32(Suppl 1):S37–40.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Bashir A, Lipton RB, Ashina S, Ashina M. Migraine and structural changes in the brain: a systematic review and meta-analysis. Neurology. 2013;81:1260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Schwedt TJ, Demaerschalk BM, Dodick DW. Patent foramen ovale and migraine: a quantitative systematic review. Cephalalgia. 2008;28:531–40.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Dowson A, Mullen MJ, Peatfield R, et al. Migraine intervention with STARFlex technology (MIST) trial: a prospective, multicenter, double-blind, sham-controlled trial to evaluate the effectiveness of patent foramen ovale closure with STARFlex septal repair implant to resolve refractory migraine headache. Circulation. 2008;117:1397–404.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Bhaskar S, Saeidi K, Borhani P, Amiri H. Recent progress in migraine pathophysiology: role of cortical spreading depression and magnetic resonance imaging. Eur J Neurosci. 2013;38:3540–51.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Candee MS, McCandless RT, Moore KR, Arrington CB, Minich LL, Bale JF Jr. White matter lesions in children and adolescents with migraine. Pediatr Neurol. 2013;49:393–6.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Hamedani AG, Rose KM, Peterlin BL, et al. Migraine and white matter hyperintensities: the ARIC MRI study. Neurology. 2013;81:1308–13.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mar S, Kelly JE, Isbell S, Aung WY, Lenox J, Prensky A. Prevalence of white matter lesions and stroke in children with migraine. Neurology. 2013;81:1387–91.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Absinta M, Rocca MA, Colombo B, et al. Patients with migraine do not have MRI-visible cortical lesions. J Neurol. 2012;259:2695–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Liu S, Kullnat J, Bourdette D, et al. Prevalence of brain magnetic resonance imaging meeting Barkhof and McDonald criteria for dissemination in space among headache patients. Mult Scler. 2013;19:1101–5.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Lapucci C, Saitta L, Bommarito G, et al. How much do periventricular lesions assist in distinguishing migraine with aura from CIS? Neurology. 2019;92:e1739–44.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lipton RB, Silberstein SD. Episodic and chronic migraine headache: breaking down barriers to optimal treatment and prevention. Headache. 2015;55(Suppl 2):103–22; quiz 123-106.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    American Headache Society. The American Headache Society Position Statement on integrating new migraine treatments into clinical practice. Headache. 2019;59:1–18.Google Scholar
  91. 91.
    Lipton RB, Fanning KM, Serrano D, Reed ML, Cady R, Buse DC. Ineffective acute treatment of episodic migraine is associated with new-onset chronic migraine. Neurology. 2015;84:688–95.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Marmura MJ, Silberstein SD, Schwedt TJ. The acute treatment of migraine in adults: the american headache society evidence assessment of migraine pharmacotherapies. Headache. 2015;55:3–20.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Goadsby PJ, Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol. 2010;9:285–98.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Dodick DW. Triptan nonresponder studies: implications for clinical practice. Headache. 2005;45:156–62.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Thorlund K, Mills EJ, Wu P, et al. Comparative efficacy of triptans for the abortive treatment of migraine: a multiple treatment comparison meta-analysis. Cephalalgia. 2014;34:258–67.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Sarchielli P, Pini LA, Zanchin G, et al. Clinical-biochemical correlates of migraine attacks in rizatriptan responders and non-responders. Cephalalgia. 2006;26:257–65.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Cady RK, Freitag FG, Mathew NT, et al. Allodynia-associated symptoms, pain intensity and time to treatment: predicting treatment response in acute migraine intervention. Headache. 2009;49:350–63.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Lipton RB, Munjal S, Buse DC, Fanning KM, Bennett A, Reed ML. Predicting inadequate response to acute migraine medication: results from the American migraine prevalence and prevention (AMPP) study. Headache. 2016;56:1635–48.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Humphrey PP, Goadsby PJ. The mode of action of sumatriptan is vascular? A debate. Cephalalgia. 1994;14:401–10; discussion 393.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Ahn AH, Basbaum AI. Where do triptans act in the treatment of migraine? Pain. 2005;115:1–4.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Goadsby PJ, Edvinsson L. The trigeminovascular system and migraine: studies characterizing cerebrovascular and neuropeptide changes seen in humans and cats. Ann Neurol. 1993;33:48–56.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Shields KG, Goadsby PJ. Serotonin receptors modulate trigeminovascular responses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiol Dis. 2006;23:491–501.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Kroger IL, May A. Triptan-induced disruption of trigemino-cortical connectivity. Neurology. 2015;84:2124–31.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Goadsby PJ. Bench to bedside advances in the 21st century for primary headache disorders: migraine treatments for migraine patients. Brain. 2016;139:2571–7.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Goadsby PJ, Wietecha LA, Dennehy EB, et al. Phase 3 randomized, placebo-controlled, double-blind study of lasmiditan for acute treatment of migraine. Brain. 2019;142:1894.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Moreno-Ajona D, Chan C, Villar-Martinez MD, Goadsby PJ. Targeting CGRP and 5-HT1F receptors for the acute therapy of migraine: a literature review. Headache. 2019;59(Suppl 2):3–19.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Messina R, Goadsby PJ. CGRP - a target for acute therapy in migraine: clinical data. Cephalalgia. 2019;39:420–7.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Tepper SJ. History and review of anti-calcitonin gene-related peptide (CGRP) therapies: from translational research to treatment. Headache. 2018;58(Suppl 3):238–75.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Puledda F, Shields K. Non-pharmacological approaches for migraine. Neurotherapeutics. 2018;15:336–45.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Lauritsen CG, Silberstein SD. Rationale for electrical parameter determination in external trigeminal nerve stimulation (eTNS) for migraine: a narrative review. Cephalalgia. 2019;39:750–60.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Silberstein SD. Preventive migraine treatment. Continuum (Minneap Minn). 2015;21:973–89.Google Scholar
  112. 112.
    Diener HC, Charles A, Goadsby PJ, Holle D. New therapeutic approaches for the prevention and treatment of migraine. Lancet Neurol. 2015;14:1010–22.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Aurora SK, Dodick DW, Turkel CC, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 1 trial. Cephalalgia. 2010;30:793–803.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Diener HC, Dodick DW, Aurora SK, et al. OnabotulinumtoxinA for treatment of chronic migraine: results from the double-blind, randomized, placebo-controlled phase of the PREEMPT 2 trial. Cephalalgia. 2010;30:804–14.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Dodick DW, Turkel CC, DeGryse RE, et al. OnabotulinumtoxinA for treatment of chronic migraine: pooled results from the double-blind, randomized, placebo-controlled phases of the PREEMPT clinical program. Headache. 2010;50:921–36.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Ong JJY, Wei DY, Goadsby PJ. Recent advances in pharmacotherapy for migraine prevention: from pathophysiology to new drugs. Drugs. 2018;78:411–37.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Tepper SJ. CGRP and headache: a brief review. Neurol Sci. 2019;40:99–105.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Massimo Filippi
    • 1
    • 2
    • 3
    • 4
  • Maria A. Rocca
    • 2
  1. 1.Neurology UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  2. 2.Neuroimaging Research UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  3. 3.Neurophysiology UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  4. 4.Vita-Salute San Raffaele UniversityMilanoItaly

Personalised recommendations