Advertisement

Multiple Sclerosis

  • Massimo Filippi
  • Maria A. Rocca
Chapter
  • 36 Downloads

Abstract

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating and neurodegenerative disease of the central nervous system (CNS) affecting young adults. It is considered an immune-mediated disease, where both genetic and environmental factors contribute to a complex and multifactorial pathogenesis. MS pathological hallmark is the occurrence of focal demyelinating lesions in the white and gray matter of the brain and the spinal cord, together with inflammation, gliosis, and neuro-axonal damage. This disorder is heterogeneous for clinical manifestations, course, and disability progression. In the majority of cases, after an initial phase characterized by reversible episodes of neurological dysfunction, clinical disability and cognitive impairment become irreversible. The diagnosis of MS requires a careful exclusion of alternative diagnoses, and the demonstration of a pathological process showing dissemination in space and time. In addition to clinical findings, magnetic resonance imaging (MRI) is fundamental in the diagnostic workup, thanks to its high sensitivity in identifying typical lesions, which allows an earlier diagnosis. MS treatment is aimed at promoting recovery from relapses, managing clinical manifestations with symptomatic drugs, and preventing the occurrence of inflammatory disease activity and its consequences, including neurodegeneration and disability progression.

References

  1. 1.
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lublin FD, Reingold SC, Cohen JA, Cutter GR, Sorensen PS, Thompson AJ, et al. Defining the clinical course of multiple sclerosis: the 2013 revisions. Neurology. 2014;83(3):278–86.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Geraldes R, Ciccarelli O, Barkhof F, De Stefano N, Enzinger C, Filippi M, et al. The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nat Rev Neurol. 2018;14(4):199–213.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    GBD 2016 Motor Neuron Disease Collaborators. Global, regional, and national burden of multiple sclerosis 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019;18(3):269–85.CrossRefGoogle Scholar
  6. 6.
    Yeshokumar AK, Narula S, Banwell B. Pediatric multiple sclerosis. Curr Opin Neurol. 2017;30(3):216–21.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Tremlett H, Devonshire V. Is late-onset multiple sclerosis associated with a worse outcome? Neurology. 2006;67(6):954–9.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. 2010;9(5):520–32.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Orton SM, Herrera BM, Yee IM, Valdar W, Ramagopalan SV, Sadovnick AD, et al. Sex ratio of multiple sclerosis in Canada: a longitudinal study. Lancet Neurol. 2006;5(11):932–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Harirchian MH, Fatehi F, Sarraf P, Honarvar NM, Bitarafan S. Worldwide prevalence of familial multiple sclerosis: a systematic review and meta-analysis. Mult Scler Relat Disord. 2017;20:43–7.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Compston A, Coles A. Multiple sclerosis. Lancet. 2002;359(9313):1221–31.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Olsson T, Barcellos LF, Alfredsson L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat Rev Neurol. 2017;13(1):25–36.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 2017;33(12):960–70.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Amato MP, Derfuss T, Hemmer B, Liblau R, Montalban X, Soelberg Sorensen P, et al. Environmental modifiable risk factors for multiple sclerosis: report from the 2016 ECTRIMS focused workshop. Mult Scler. 2017:1352458516686847.Google Scholar
  15. 15.
    Endriz J, Ho PP, Steinman L. Time correlation between mononucleosis and initial symptoms of MS. Neurol Neuroimmunol Neuroinflamm. 2017;4(3):e308.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lai YH, Fang TC. The pleiotropic effect of vitamin D. ISRN Nephrol. 2013;2013:898125.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Pierrot-Deseilligny C, Souberbielle JC. Vitamin D and multiple sclerosis: an update. Mult Scler Relat Disord. 2017;14:35–45.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Handel AE, Williamson AJ, Disanto G, Dobson R, Giovannoni G, Ramagopalan SV. Smoking and multiple sclerosis: an updated meta-analysis. PLoS One. 2011;6(1):e16149.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hindson J. Multiple sclerosis: a possible link between multiple sclerosis and gut microbiota. Nat Rev Neurol. 2017;13(12):705.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol. 2000;47(6):707–17.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kutzelnigg A, Lucchinetti CF, Stadelmann C, Bruck W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(Pt 11):2705–12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Green AJ, McQuaid S, Hauser SL, Allen IV, Lyness R. Ocular pathology in multiple sclerosis: retinal atrophy and inflammation irrespective of disease duration. Brain. 2010;133(Pt 6):1591–601.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gilmore CP, Donaldson I, Bo L, Owens T, Lowe J, Evangelou N. Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry. 2009;80(2):182–7.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol. 2015;78(5):710–21.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Machado-Santos J, Saji E, Troscher AR, Paunovic M, Liblau R, Gabriely G, et al. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain. 2018;141(7):2066–82.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol. 2012;8(11):647–56.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mahad DH, Trapp BD, Lassmann H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015;14(2):183–93.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Prineas JW, Kwon EE, Cho ES, Sharer LR, Barnett MH, Oleszak EL, et al. Immunopathology of secondary-progressive multiple sclerosis. Ann Neurol. 2001;50(5):646–57.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Luchetti S, Fransen NL, van Eden CG, Ramaglia V, Mason M, Huitinga I. Progressive multiple sclerosis patients show substantial lesion activity that correlates with clinical disease severity and sex: a retrospective autopsy cohort analysis. Acta Neuropathol. 2018;135(4):511–28.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol. 2015;15(9):545–58.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Dal-Bianco A, Grabner G, Kronnerwetter C, Weber M, Hoftberger R, Berger T, et al. Slow expansion of multiple sclerosis iron rim lesions: pathology and 7 T magnetic resonance imaging. Acta Neuropathol. 2017;133(1):25–42.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Calabrese M, Magliozzi R, Ciccarelli O, Geurts JJ, Reynolds R, Martin R. Exploring the origins of grey matter damage in multiple sclerosis. Nat Rev Neurosci. 2015;16(3):147–58.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Filippi M, Bruck W, Chard D, Fazekas F, Geurts JJG, Enzinger C, et al. Association between pathological and MRI findings in multiple sclerosis. Lancet Neurol. 2019;18(2):198–210.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Kutzelnigg A, Faber-Rod JC, Bauer J, Lucchinetti CF, Sorensen PS, Laursen H, et al. Widespread demyelination in the cerebellar cortex in multiple sclerosis. Brain Pathol. 2007;17(1):38–44.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Haider L, Simeonidou C, Steinberger G, Hametner S, Grigoriadis N, Deretzi G, et al. Multiple sclerosis deep grey matter: the relation between demyelination, neurodegeneration, inflammation and iron. J Neurol Neurosurg Psychiatry. 2014;85(12):1386–95.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Vercellino M, Masera S, Lorenzatti M, Condello C, Merola A, Mattioda A, et al. Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J Neuropathol Exp Neurol. 2009;68(5):489–502.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Petrova N, Carassiti D, Altmann DR, Baker D, Schmierer K. Axonal loss in the multiple sclerosis spinal cord revisited. Brain Pathol. 2017;28(3):334–48.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol. 2001;50(3):389–400.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Dutta R, Chang A, Doud MK, Kidd GJ, Ribaudo MV, Young EA, et al. Demyelination causes synaptic alterations in hippocampi from multiple sclerosis patients. Ann Neurol. 2011;69(3):445–54.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Jurgens T, Jafari M, Kreutzfeldt M, Bahn E, Bruck W, Kerschensteiner M, et al. Reconstruction of single cortical projection neurons reveals primary spine loss in multiple sclerosis. Brain. 2016;139(Pt 1):39–46.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Wegner C, Esiri MM, Chance SA, Palace J, Matthews PM. Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology. 2006;67(6):960–7.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bo L, Vedeler CA, Nyland HI, Trapp BD, Mork SJ. Subpial demyelination in the cerebral cortex of multiple sclerosis patients. J Neuropathol Exp Neurol. 2003;62(7):723–32.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Choi SR, Howell OW, Carassiti D, Magliozzi R, Gveric D, Muraro PA, et al. Meningeal inflammation plays a role in the pathology of primary progressive multiple sclerosis. Brain. 2012;135(Pt 10):2925–37.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Howell OW, Reeves CA, Nicholas R, Carassiti D, Radotra B, Gentleman SM, et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain. 2011;134(Pt 9):2755–71.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2007;130(Pt 4):1089–104.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Haider L, Zrzavy T, Hametner S, Hoftberger R, Bagnato F, Grabner G, et al. The topography of demyelination and neurodegeneration in the multiple sclerosis brain. Brain. 2016;139(Pt 3):807–15.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Magliozzi R, Howell OW, Nicholas R, Cruciani C, Castellaro M, Romualdi C, et al. Inflammatory intrathecal profiles and cortical damage in multiple sclerosis. Ann Neurol. 2018;83(4):739–55.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Stadelmann C. Multiple sclerosis as a neurodegenerative disease: pathology, mechanisms and therapeutic implications. Curr Opin Neurol. 2011;24(3):224–9.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. 2014;10(4):225–38.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Lassmann H. Multiple sclerosis pathology. Cold Spring Harb Perspect Med. 2018;8(3).Google Scholar
  51. 51.
    Charil A, Filippi M. Inflammatory demyelination and neurodegeneration in early multiple sclerosis. J Neurol Sci. 2007;259(1–2):7–15.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Albert M, Antel J, Bruck W, Stadelmann C. Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathol. 2007;17(2):129–38.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Strijbis EMM, Kooi EJ, van der Valk P, Geurts JJG. Cortical remyelination is heterogeneous in multiple sclerosis. J Neuropathol Exp Neurol. 2017;76(5):390–401.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129(Pt 12):3165–72.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Harlow DE, Honce JM, Miravalle AA. Remyelination therapy in multiple sclerosis. Front Neurol. 2015;6:257.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Prineas JW, Barnard RO, Kwon EE, Sharer LR, Cho ES. Multiple sclerosis: remyelination of nascent lesions. Ann Neurol. 1993;33(2):137–51.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Goldschmidt T, Antel J, Konig FB, Bruck W, Kuhlmann T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 2009;72(22):1914–21.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Li R, Patterson K, Bar-Or A. Reassessing the contributions of B cells in multiple sclerosis. Nat Rev Immunol. 2018;19(7):696–707.CrossRefGoogle Scholar
  60. 60.
    Lassmann H. Targets of therapy in progressive MS. Mult Scler. 2017 Oct;23(12):1593–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Dutta R, Trapp BD. Relapsing and progressive forms of multiple sclerosis: insights from pathology. Curr Opin Neurol. 2014;27(3):271–8.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. Lancet Neurol. 2005;4(5):281–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Miller DH, Chard DT, Ciccarelli O. Clinically isolated syndromes. Lancet Neurol. 2012;11(2):157–69.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    McAlpine D. Multiple sclerosis: a review. Br Med J. 1973;2(5861):292–5.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    McDonald WI. Relapse, remission, and progression in multiple sclerosis. N Engl J Med. 2000;343(20):1486–7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Vollmer T. The natural history of relapses in multiple sclerosis. J Neurol Sci. 2007;256(Suppl 1):S5–13.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Toosy AT, Mason DF, Miller DH. Optic neuritis. Lancet Neurol. 2014;13(1):83–99.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Petzold A, Wattjes MP, Costello F, Flores-Rivera J, Fraser CL, Fujihara K, et al. The investigation of acute optic neuritis: a review and proposed protocol. Nat Rev Neurol. 2014;10(8):447–58.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Galetta SL, Villoslada P, Levin N, Shindler K, Ishikawa H, Parr E, et al. Acute optic neuritis: unmet clinical needs and model for new therapies. Neurol Neuroimmunol Neuroinflamm. 2015;2(4):e135.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Rae-Grant AD, Eckert NJ, Bartz S, Reed JF. Sensory symptoms of multiple sclerosis: a hidden reservoir of morbidity. Mult Scler. 1999;5(3):179–83.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    McAlpine D. Symptoms and signs. In: McApline D, Lumsden CE, Acheson ED, editors. Multiple sclerosis: a reappraisal. Baltimore: Williams and Wilkins; 1972. p. 132–96.Google Scholar
  72. 72.
    Dillon BE, Lemack GE. Urodynamics in the evaluation of the patient with multiple sclerosis: when are they helpful and how do we use them? Urol Clin North Am. 2014;41(3):439–44, ix.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Rocca MA, Amato MP, De Stefano N, Enzinger C, Geurts JJ, Penner IK, et al. Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurol. 2015;14(3):302–17.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Feinstein A, Magalhaes S, Richard JF, Audet B, Moore C. The link between multiple sclerosis and depression. Nat Rev Neurol. 2014;10(9):507–17.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Solaro C, Brichetto G, Amato MP, Cocco E, Colombo B, D’Aleo G, et al. The prevalence of pain in multiple sclerosis: a multicenter cross-sectional study. Neurology. 2004;63(5):919–21.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Lublin FD, Reingold SC. Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) advisory committee on clinical trials of new agents in multiple sclerosis. Neurology. 1996;46(4):907–11.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Confavreux C, Vukusic S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006;129(Pt 3):606–16.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019;142(7):1858–75.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Rovira A, Wattjes MP, Tintore M, Tur C, Yousry TA, Sormani MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis-clinical implementation in the diagnostic process. Nat Rev Neurol. 2015;11(8):471–82.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Traboulsee A, Simon JH, Stone L, Fisher E, Jones DE, Malhotra A, et al. Revised recommendations of the consortium of MS Centers task force for a standardized MRI protocol and clinical guidelines for the diagnosis and follow-up of multiple sclerosis. AJNR Am J Neuroradiol. 2016;37(3):394–401.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Dobson R, Ramagopalan S, Davis A, Giovannoni G. Cerebrospinal fluid oligoclonal bands in multiple sclerosis and clinically isolated syndromes: a meta-analysis of prevalence, prognosis and effect of latitude. J Neurol Neurosurg Psychiatry. 2013;84(8):909–14.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Arrambide G, Tintore M, Espejo C, Auger C, Castillo M, Rio J, et al. The value of oligoclonal bands in the multiple sclerosis diagnostic criteria. Brain. 2018;141(4):1075–84.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Kuhle J, Disanto G, Dobson R, Adiutori R, Bianchi L, Topping J, et al. Conversion from clinically isolated syndrome to multiple sclerosis: a large multicentre study. Mult Scler. 2015;21(8):1013–24.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Leocani L, Rocca MA, Comi G. MRI and neurophysiological measures to predict course, disability and treatment response in multiple sclerosis. Curr Opin Neurol. 2016;29(3):243–53.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    McDonald WI, Compston A, Edan G, Goodkin D, Hartung HP, Lublin FD, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001;50(1):121–7.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Polman CH, Reingold SC, Edan G, Filippi M, Hartung HP, Kappos L, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald criteria”. Ann Neurol. 2005;58(6):840–6.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Filippi M, Rocca MA, Ciccarelli O, De Stefano N, Evangelou N, Kappos L, et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016;15(3):292–303.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Filippi M, Preziosa P, Meani A, Ciccarelli O, Mesaros S, Rovira A, et al. Prediction of a multiple sclerosis diagnosis in patients with clinically isolated syndrome using the 2016 MAGNIMS and 2010 McDonald criteria: a retrospective study. Lancet Neurol. 2018;17(2):133–42.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Schumacher F. Problems of experimental trials of therapy in multiple sclerosis. Ann N Y Acad Sci. 1965;122:552–68.CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Poser CM, Paty DW, Scheinberg L, McDonald WI, Davis FA, Ebers GC, et al. New diagnostic criteria for multiple sclerosis: guidelines for research protocols. Ann Neurol. 1983;13(3):227–31.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    van der Vuurst de Vries RM, Mescheriakova JY, Wong YYM, Runia TF, Jafari N, Samijn JP, et al. Application of the 2017 revised McDonald criteria for multiple sclerosis to patients with a typical clinically isolated syndrome. JAMA Neurol. 2018;75(11):1392–8.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Solomon AJ, Corboy JR. The tension between early diagnosis and misdiagnosis of multiple sclerosis. Nat Rev Neurol. 2017;13(9):567–72.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Solomon AJ, Naismith RT, Cross AH. Misdiagnosis of multiple sclerosis: impact of the 2017 McDonald criteria on clinical practice. Neurology. 2019;92(1):26–33.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Sati P, Oh J, Constable RT, Evangelou N, Guttmann CR, Henry RG, et al. The central vein sign and its clinical evaluation for the diagnosis of multiple sclerosis: a consensus statement from the north American imaging in multiple sclerosis cooperative. Nat Rev Neurol. 2016;12(12):714–22.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Kister I, Herbert J, Zhou Y, Ge Y. Ultrahigh-field MR (7 T) imaging of brain lesions in neuromyelitis optica. Mult Scler Int. 2013;2013:398259.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Sinnecker T, Dorr J, Pfueller CF, Harms L, Ruprecht K, Jarius S, et al. Distinct lesion morphology at 7-T MRI differentiates neuromyelitis optica from multiple sclerosis. Neurology. 2012;79(7):708–14.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Maggi P, Absinta M, Grammatico M, Vuolo L, Emmi G, Carlucci G, et al. Central vein sign differentiates multiple sclerosis from central nervous system inflammatory vasculopathies. Ann Neurol. 2018;83(2):283–94.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Solomon AJ, Schindler MK, Howard DB, Watts R, Sati P, Nickerson JP, et al. “Central vessel sign” on 3T FLAIR∗ MRI for the differentiation of multiple sclerosis from migraine. Ann Clin Transl Neurol. 2016;3(2):82–7.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Wuerfel J, Sinnecker T, Ringelstein EB, Jarius S, Schwindt W, Niendorf T, et al. Lesion morphology at 7 tesla MRI differentiates Susac syndrome from multiple sclerosis. Mult Scler. 2012;18(11):1592–9.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Campion T, Smith RJP, Altmann DR, Brito GC, Turner BP, Evanson J, et al. FLAIR∗ to visualize veins in white matter lesions: a new tool for the diagnosis of multiple sclerosis? Eur Radiol. 2017;27(10):4257–63.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Kilsdonk ID, Wattjes MP, Lopez-Soriano A, Kuijer JP, de Jong MC, de Graaf WL, et al. Improved differentiation between MS and vascular brain lesions using FLAIR∗ at 7 tesla. Eur Radiol. 2014;24(4):841–9.CrossRefPubMedPubMedCentralGoogle Scholar
  103. 103.
    Mistry N, Abdel-Fahim R, Samaraweera A, Mougin O, Tallantyre E, Tench C, et al. Imaging central veins in brain lesions with 3-T T2∗-weighted magnetic resonance imaging differentiates multiple sclerosis from microangiopathic brain lesions. Mult Scler. 2016;22(10):1289–96.CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Samaraweera AP, Clarke MA, Whitehead A, Falah Y, Driver ID, Dineen RA, et al. The central vein sign in multiple sclerosis lesions is present irrespective of the T2∗ sequence at 3 T. J Neuroimaging. 2017;27(1):114–21.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Tallantyre EC, Dixon JE, Donaldson I, Owens T, Morgan PS, Morris PG, et al. Ultra-high-field imaging distinguishes MS lesions from asymptomatic white matter lesions. Neurology. 2011;76(6):534–9.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Charil A, Yousry TA, Rovaris M, Barkhof F, De Stefano N, Fazekas F, et al. MRI and the diagnosis of multiple sclerosis: expanding the concept of “no better explanation”. Lancet Neurol. 2006;5(10):841–52.CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Miller DH, Weinshenker BG, Filippi M, Banwell BL, Cohen JA, Freedman MS, et al. Differential diagnosis of suspected multiple sclerosis: a consensus approach. Mult Scler. 2008;14(9):1157–74.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Koedel U, Fingerle V, Pfister HW. Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat Rev Neurol. 2015;11(8):446–56.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Yousry TA, Pelletier D, Cadavid D, Gass A, Richert ND, Radue EW, et al. Magnetic resonance imaging pattern in natalizumab-associated progressive multifocal leukoencephalopathy. Ann Neurol. 2012;72(5):779–87.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ahmed RM, Murphy E, Davagnanam I, Parton M, Schott JM, Mummery CJ, et al. A practical approach to diagnosing adult onset leukodystrophies. J Neurol Neurosurg Psychiatry. 2014;85(7):770–81.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Kohler W, Curiel J, Vanderver A. Adulthood leukodystrophies. Nat Rev Neurol. 2018;14(2):94–105.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Chun BY, Rizzo JF 3rd. Dominant optic atrophy and Leber’s hereditary optic neuropathy: update on clinical features and current therapeutic approaches. Semin Pediatr Neurol. 2017;24(2):129–34.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    El-Abassi R, Singhal D, England JD. Fabry’s disease. J Neurol Sci. 2014;344(1–2):5–19.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Hemmer B, Glocker FX, Schumacher M, Deuschl G, Lucking CH. Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry. 1998;65(6):822–7.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Kumar N, Ahlskog JE, Klein CJ, Port JD. Imaging features of copper deficiency myelopathy: a study of 25 cases. Neuroradiology. 2006;48(2):78–83.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol. 2009;8(7):643–53.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Kleffner I, Dorr J, Ringelstein M, Gross CC, Bockenfeld Y, Schwindt W, et al. Diagnostic criteria for Susac syndrome. J Neurol Neurosurg Psychiatry. 2016;87(12):1287–95.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Dorr J, Krautwald S, Wildemann B, Jarius S, Ringelstein M, Duning T, et al. Characteristics of Susac syndrome: a review of all reported cases. Nat Rev Neurol. 2013;9(6):307–16.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Abdel Razek AA, Alvarez H, Bagg S, Refaat S, Castillo M. Imaging spectrum of CNS vasculitis. Radiographics. 2014;34(4):873–94.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Birnbaum J, Hellmann DB. Primary angiitis of the central nervous system. Arch Neurol. 2009;66(6):704–9.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Jafri K, Patterson SL, Lanata C. Central nervous system manifestations of systemic lupus erythematosus. Rheum Dis Clin North Am. 2017;43(4):531–45.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Al-Araji A, Kidd DP. Neuro-Behcet’s disease: epidemiology, clinical characteristics, and management. Lancet Neurol. 2009;8(2):192–204.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Hebel R, Dubaniewicz-Wybieralska M, Dubaniewicz A. Overview of neurosarcoidosis: recent advances. J Neurol. 2015;262(2):258–67.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Margaretten M. Neurologic manifestations of primary Sjogren syndrome. Rheum Dis Clin North Am. 2017;43(4):519–29.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Wingerchuk DM, Banwell B, Bennett JL, Cabre P, Carroll W, Chitnis T, et al. International consensus diagnostic criteria for neuromyelitis optica spectrum disorders. Neurology. 2015;85(2):177–89.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Narayan R, Simpson A, Fritsche K, Salama S, Pardo S, Mealy M, et al. MOG antibody disease: a review of MOG antibody seropositive neuromyelitis optica spectrum disorder. Mult Scler Relat Disord. 2018;25:66–72.CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Tenembaum S, Chitnis T, Ness J, Hahn JS. Acute disseminated encephalomyelitis. Neurology. 2007;68(16 Suppl 2):S23–36.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Simon JH, Kleinschmidt-DeMasters BK. Variants of multiple sclerosis. Neuroimaging Clin N Am. 2008;18(4):703–16, xi.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Mowry EM. Vitamin D: evidence for its role as a prognostic factor in multiple sclerosis. J Neurol Sci. 2011;311(1–2):19–22.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol. 2010;67(5):618–24.PubMedPubMedCentralGoogle Scholar
  131. 131.
    Martinelli V, Dalla Costa G, Colombo B, Dalla Libera D, Rubinacci A, Filippi M, et al. Vitamin D levels and risk of multiple sclerosis in patients with clinically isolated syndromes. Mult Scler. 2014;20(2):147–55.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Di Pauli F, Reindl M, Ehling R, Schautzer F, Gneiss C, Lutterotti A, et al. Smoking is a risk factor for early conversion to clinically definite multiple sclerosis. Mult Scler. 2008;14(8):1026–30.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    Lunemann JD, Tintore M, Messmer B, Strowig T, Rovira A, Perkal H, et al. Elevated Epstein-Barr virus-encoded nuclear antigen-1 immune responses predict conversion to multiple sclerosis. Ann Neurol. 2010;67(2):159–69.CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Kelly MA, Cavan DA, Penny MA, Mijovic CH, Jenkins D, Morrissey S, et al. The influence of HLA-DR and -DQ alleles on progression to multiple sclerosis following a clinically isolated syndrome. Hum Immunol. 1993;37(3):185–91.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Hauser SL, Oksenberg JR, Lincoln R, Garovoy J, Beck RW, Cole SR, et al. Interaction between HLA-DR2 and abnormal brain MRI in optic neuritis and early MS. Optic Neuritis Study Group. Neurology. 2000;54(9):1859–61.CrossRefPubMedPubMedCentralGoogle Scholar
  136. 136.
    De Jager PL, Chibnik LB, Cui J, Reischl J, Lehr S, Simon KC, et al. Integration of genetic risk factors into a clinical algorithm for multiple sclerosis susceptibility: a weighted genetic risk score. Lancet Neurol. 2009;8(12):1111–9.CrossRefPubMedPubMedCentralGoogle Scholar
  137. 137.
    Mowry EM, Pesic M, Grimes B, Deen SR, Bacchetti P, Waubant E. Clinical predictors of early second event in patients with clinically isolated syndrome. J Neurol. 2009;256(7):1061–6.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Polman C, Kappos L, Freedman MS, Edan G, Hartung HP, Miller DH, et al. Subgroups of the BENEFIT study: risk of developing MS and treatment effect of interferon beta-1b. J Neurol. 2008;255(4):480–7.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Swanton JK, Fernando KT, Dalton CM, Miszkiel KA, Altmann DR, Plant GT, et al. Early MRI in optic neuritis: the risk for clinically definite multiple sclerosis. Mult Scler. 2010;16(2):156–65.CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Dobson R, Ramagopalan S, Giovannoni G. The effect of gender in clinically isolated syndrome (CIS): a meta-analysis. Mult Scler. 2012;18(5):600–4.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Beck RW, Trobe JD, Moke PS, Gal RL, Xing D, Bhatti MT, et al. High- and low-risk profiles for the development of multiple sclerosis within 10 years after optic neuritis: experience of the optic neuritis treatment trial. Arch Ophthalmol. 2003;121(7):944–9.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Jacobs LD, Beck RW, Simon JH, Kinkel RP, Brownscheidle CM, Murray TJ, et al. Intramuscular interferon beta-1a therapy initiated during a first demyelinating event in multiple sclerosis. CHAMPS Study Group. N Engl J Med. 2000;343(13):898–904.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    Comi G, Filippi M, Barkhof F, Durelli L, Edan G, Fernandez O, et al. Effect of early interferon treatment on conversion to definite multiple sclerosis: a randomised study. Lancet. 2001;357(9268):1576–82.CrossRefPubMedPubMedCentralGoogle Scholar
  144. 144.
    Nielsen JM, Pohl C, Polman CH, Barkhof F, Freedman MS, Edan G, et al. MRI characteristics are predictive for CDMS in monofocal, but not in multifocal patients with a clinically isolated syndrome. BMC Neurol. 2009;9:19.CrossRefPubMedPubMedCentralGoogle Scholar
  145. 145.
    Tintore M, Rovira A, Brieva L, Grive E, Jardi R, Borras C, et al. Isolated demyelinating syndromes: comparison of CSF oligoclonal bands and different MR imaging criteria to predict conversion to CDMS. Mult Scler. 2001;7(6):359–63.CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Tintore M, Rovira A, Rio J, Tur C, Pelayo R, Nos C, et al. Do oligoclonal bands add information to MRI in first attacks of multiple sclerosis? Neurology. 2008;70(13 Pt 2):1079–83.CrossRefPubMedPubMedCentralGoogle Scholar
  147. 147.
    Tintore M, Rovira A, Rio J, Otero-Romero S, Arrambide G, Tur C, et al. Defining high, medium and low impact prognostic factors for developing multiple sclerosis. Brain. 2015;138(Pt 7):1863–74.CrossRefPubMedPubMedCentralGoogle Scholar
  148. 148.
    Huss AM, Halbgebauer S, Ockl P, Trebst C, Spreer A, Borisow N, et al. Importance of cerebrospinal fluid analysis in the era of McDonald 2010 criteria: a German-Austrian retrospective multicenter study in patients with a clinically isolated syndrome. J Neurol. 2016;263(12):2499–504.CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Zipoli V, Goretti B, Hakiki B, Siracusa G, Sorbi S, Portaccio E, et al. Cognitive impairment predicts conversion to multiple sclerosis in clinically isolated syndromes. Mult Scler. 2010;16(1):62–7.CrossRefPubMedPubMedCentralGoogle Scholar
  150. 150.
    Brex PA, Ciccarelli O, O’Riordan JI, Sailer M, Thompson AJ, Miller DH. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med. 2002;346(3):158–64.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Fisniku LK, Brex PA, Altmann DR, Miszkiel KA, Benton CE, Lanyon R, et al. Disability and T2 MRI lesions: a 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain. 2008;131(Pt 3):808–17.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Minneboo A, Barkhof F, Polman CH, Uitdehaag BM, Knol DL, Castelijns JA. Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch Neurol. 2004;61(2):217–21.CrossRefPubMedPubMedCentralGoogle Scholar
  153. 153.
    Uher T, Horakova D, Kalincik T, Bergsland N, Tyblova M, Ramasamy DP, et al. Early magnetic resonance imaging predictors of clinical progression after 48 months in clinically isolated syndrome patients treated with intramuscular interferon beta-1a. Eur J Neurol. 2015;22(7):1113–23.CrossRefPubMedPubMedCentralGoogle Scholar
  154. 154.
    Tintore M, Rovira A, Arrambide G, Mitjana R, Rio J, Auger C, et al. Brainstem lesions in clinically isolated syndromes. Neurology. 2010;75(21):1933–8.CrossRefPubMedPubMedCentralGoogle Scholar
  155. 155.
    Sombekke MH, Wattjes MP, Balk LJ, Nielsen JM, Vrenken H, Uitdehaag BM, et al. Spinal cord lesions in patients with clinically isolated syndrome: a powerful tool in diagnosis and prognosis. Neurology. 2013;80(1):69–75.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Arrambide G, Rovira A, Sastre-Garriga J, Tur C, Castillo J, Rio J, et al. Spinal cord lesions: a modest contributor to diagnosis in clinically isolated syndromes but a relevant prognostic factor. Mult Scler. 2018;24(3):301–12.CrossRefPubMedPubMedCentralGoogle Scholar
  157. 157.
    Barkhof F, Filippi M, Miller DH, Scheltens P, Campi A, Polman CH, et al. Comparison of MRI criteria at first presentation to predict conversion to clinically definite multiple sclerosis. Brain. 1997;120(Pt 11):2059–69.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Weinshenker BG, Rice GP, Noseworthy JH, Carriere W, Baskerville J, Ebers GC. The natural history of multiple sclerosis: a geographically based study. 3. Multivariate analysis of predictive factors and models of outcome. Brain. 1991;114(Pt 2):1045–56.CrossRefPubMedPubMedCentralGoogle Scholar
  159. 159.
    Guillemin F, Baumann C, Epstein J, Kerschen P, Garot T, Mathey G, et al. Older age at multiple sclerosis onset is an independent factor of poor prognosis: a population-based cohort study. Neuroepidemiology. 2017;48(3–4):179–87.CrossRefPubMedPubMedCentralGoogle Scholar
  160. 160.
    Bove RM, Healy B, Augustine A, Musallam A, Gholipour T, Chitnis T. Effect of gender on late-onset multiple sclerosis. Mult Scler. 2012;18(10):1472–9.CrossRefPubMedPubMedCentralGoogle Scholar
  161. 161.
    Manouchehrinia A, Tench CR, Maxted J, Bibani RH, Britton J, Constantinescu CS. Tobacco smoking and disability progression in multiple sclerosis: United Kingdom cohort study. Brain. 2013;136(Pt 7):2298–304.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Degenhardt A, Ramagopalan SV, Scalfari A, Ebers GC. Clinical prognostic factors in multiple sclerosis: a natural history review. Nat Rev Neurol. 2009;5(12):672–82.CrossRefGoogle Scholar
  163. 163.
    Swanton JK, Fernando KT, Dalton CM, Miszkiel KA, Altmann DR, Plant GT, et al. Early MRI in optic neuritis: the risk for disability. Neurology. 2009;72(6):542–50.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Brownlee WJ, Altmann DR, Alves Da Mota P, Swanton JK, Miszkiel KA, Wheeler-Kingshott CG, et al. Association of asymptomatic spinal cord lesions and atrophy with disability 5 years after a clinically isolated syndrome. Mult Scler. 2017;23(5):665–74.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Arrambide G, Espejo C, Eixarch H, Villar LM, Alvarez-Cermeno JC, Picon C, et al. Neurofilament light chain level is a weak risk factor for the development of MS. Neurology. 2016;87(11):1076–84.CrossRefPubMedPubMedCentralGoogle Scholar
  166. 166.
    Comabella M, Montalban X. Body fluid biomarkers in multiple sclerosis. Lancet Neurol. 2014;13(1):113–26.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Teunissen CE, Malekzadeh A, Leurs C, Bridel C, Killestein J. Body fluid biomarkers for multiple sclerosis—the long road to clinical application. Nat Rev Neurol. 2015;11(10):585–96.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Teunissen CE, Iacobaeus E, Khademi M, Brundin L, Norgren N, Koel-Simmelink MJ, et al. Combination of CSF N-acetylaspartate and neurofilaments in multiple sclerosis. Neurology. 2009;72(15):1322–9.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Martinez MA, Olsson B, Bau L, Matas E, Cobo Calvo A, Andreasson U, et al. Glial and neuronal markers in cerebrospinal fluid predict progression in multiple sclerosis. Mult Scler. 2015;21(5):550–61.CrossRefPubMedPubMedCentralGoogle Scholar
  170. 170.
    Disanto G, Barro C, Benkert P, Naegelin Y, Schadelin S, Giardiello A, et al. Serum neurofilament light: a biomarker of neuronal damage in multiple sclerosis. Ann Neurol. 2017;81(6):857–70.CrossRefPubMedPubMedCentralGoogle Scholar
  171. 171.
    Disanto G, Adiutori R, Dobson R, Martinelli V, Dalla Costa G, Runia T, et al. Serum neurofilament light chain levels are increased in patients with a clinically isolated syndrome. J Neurol Neurosurg Psychiatry. 2016;87(2):126–9.PubMedPubMedCentralGoogle Scholar
  172. 172.
    Siller N, Kuhle J, Muthuraman M, Barro C, Uphaus T, Groppa S, et al. Serum neurofilament light chain is a biomarker of acute and chronic neuronal damage in early multiple sclerosis. Mult Scler. 2019;25(5):678–86.CrossRefPubMedPubMedCentralGoogle Scholar
  173. 173.
    Khalil M, Enzinger C, Langkammer C, Ropele S, Mader A, Trentini A, et al. CSF neurofilament and N-acetylaspartate related brain changes in clinically isolated syndrome. Mult Scler. 2013;19(4):436–42.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Trentini A, Comabella M, Tintore M, Koel-Simmelink MJ, Killestein J, Roos B, et al. N-acetylaspartate and neurofilaments as biomarkers of axonal damage in patients with progressive forms of multiple sclerosis. J Neurol. 2014;261(12):2338–43.CrossRefPubMedPubMedCentralGoogle Scholar
  175. 175.
    Salzer J, Svenningsson A, Sundstrom P. Neurofilament light as a prognostic marker in multiple sclerosis. Mult Scler. 2010;16(3):287–92.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Barro C, Benkert P, Disanto G, Tsagkas C, Amann M, Naegelin Y, et al. Serum neurofilament as a predictor of disease worsening and brain and spinal cord atrophy in multiple sclerosis. Brain. 2018;141(8):2382–91.CrossRefPubMedPubMedCentralGoogle Scholar
  177. 177.
    Gunnarsson M, Malmestrom C, Axelsson M, Sundstrom P, Dahle C, Vrethem M, et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol. 2011;69(1):83–9.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Kuhle J, Disanto G, Lorscheider J, Stites T, Chen Y, Dahlke F, et al. Fingolimod and CSF neurofilament light chain levels in relapsing-remitting multiple sclerosis. Neurology. 2015;84(16):1639–43.CrossRefPubMedPubMedCentralGoogle Scholar
  179. 179.
    Piehl F, Kockum I, Khademi M, Blennow K, Lycke J, Zetterberg H, et al. Plasma neurofilament light chain levels in patients with MS switching from injectable therapies to fingolimod. Mult Scler. 2018;24(8):1046–54.CrossRefPubMedPubMedCentralGoogle Scholar
  180. 180.
    Petzold A, Balcer LJ, Calabresi PA, Costello F, Frohman TC, Frohman EM, et al. Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2017;16(10):797–812.CrossRefPubMedPubMedCentralGoogle Scholar
  181. 181.
    Petzold A, de Boer JF, Schippling S, Vermersch P, Kardon R, Green A, et al. Optical coherence tomography in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol. 2010;9(9):921–32.CrossRefPubMedPubMedCentralGoogle Scholar
  182. 182.
    Gabilondo I, Martinez-Lapiscina EH, Fraga-Pumar E, Ortiz-Perez S, Torres-Torres R, Andorra M, et al. Dynamics of retinal injury after acute optic neuritis. Ann Neurol. 2015;77(3):517–28.CrossRefPubMedPubMedCentralGoogle Scholar
  183. 183.
    Montalban X, Gold R, Thompson AJ, Otero-Romero S, Amato MP, Chandraratna D, et al. ECTRIMS/EAN guideline on the pharmacological treatment of people with multiple sclerosis. Mult Scler. 2018;24(2):96–120.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Rae-Grant A, Day GS, Marrie RA, Rabinstein A, Cree BAC, Gronseth GS, et al. Practice guideline recommendations summary: disease-modifying therapies for adults with multiple sclerosis: report of the guideline development, dissemination, and implementation Subcommittee of the American Academy of Neurology. Neurology. 2018;90(17):777–88.CrossRefPubMedPubMedCentralGoogle Scholar
  185. 185.
    Comi G, Radaelli M, Soelberg Sorensen P. Evolving concepts in the treatment of relapsing multiple sclerosis. Lancet. 2017;389(10076):1347–56.CrossRefPubMedPubMedCentralGoogle Scholar
  186. 186.
    Hartung HP, Gonsette R, Konig N, Kwiecinski H, Guseo A, Morrissey SP, et al. Mitoxantrone in progressive multiple sclerosis: a placebo-controlled, double-blind, randomised, multicentre trial. Lancet. 2002;360(9350):2018–25.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Hawker K, O’Connor P, Freedman MS, Calabresi PA, Antel J, Simon J, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009;66(4):460–71.CrossRefPubMedPubMedCentralGoogle Scholar
  188. 188.
    Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N Engl J Med. 2017;376(3):209–20.CrossRefPubMedPubMedCentralGoogle Scholar
  189. 189.
    Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. Lancet. 2018;391(10127):1263–73.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Wattjes MP, Rovira A, Miller D, Yousry TA, Sormani MP, de Stefano MP, et al. Evidence-based guidelines: MAGNIMS consensus guidelines on the use of MRI in multiple sclerosis—establishing disease prognosis and monitoring patients. Nat Rev Neurol. 2015;11(10):597–606.PubMedPubMedCentralGoogle Scholar
  191. 191.
    Sormani MP, Arnold DL, De Stefano N. Treatment effect on brain atrophy correlates with treatment effect on disability in multiple sclerosis. Ann Neurol. 2014;75(1):43–9.CrossRefPubMedPubMedCentralGoogle Scholar
  192. 192.
    Sormani MP, Bruzzi P. MRI lesions as a surrogate for relapses in multiple sclerosis: a meta-analysis of randomised trials. Lancet Neurol. 2013;12(7):669–76.CrossRefPubMedPubMedCentralGoogle Scholar
  193. 193.
    Gasperini C, Prosperini L, Tintore M, Sormani MP, Filippi M, Rio J, et al. Unraveling treatment response in multiple sclerosis: a clinical and MRI challenge. Neurology. 2019;92(4):180–92.CrossRefPubMedPubMedCentralGoogle Scholar
  194. 194.
    Giovannoni G, Tomic D, Bright JR, Havrdova E. “No evident disease activity”: the use of combined assessments in the management of patients with multiple sclerosis. Mult Scler. 2017;23(9):1179–87.CrossRefPubMedPubMedCentralGoogle Scholar
  195. 195.
    Rio J, Rovira A, Tintore M, Otero-Romero S, Comabella M, Vidal-Jordana A, et al. Disability progression markers over 6-12 years in interferon-beta-treated multiple sclerosis patients. Mult Scler. 2018;24(3):322–30.CrossRefPubMedPubMedCentralGoogle Scholar
  196. 196.
    Kappos L, De Stefano N, Freedman MS, Cree BA, Radue EW, Sprenger T, et al. Inclusion of brain volume loss in a revised measure of ‘no evidence of disease activity’ (NEDA-4) in relapsing-remitting multiple sclerosis. Mult Scler. 2016;22(10):1297–305.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    Rocca MA, Battaglini M, Benedict RH, De Stefano N, Geurts JJ, Henry RG, et al. Brain MRI atrophy quantification in MS: from methods to clinical application. Neurology. 2017;88(4):403–13.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Cohen JA, Arnold DL, Comi G, Bar-Or A, Gujrathi S, Hartung JP, et al. Safety and efficacy of the selective sphingosine 1-phosphate receptor modulator ozanimod in relapsing multiple sclerosis (RADIANCE): a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(4):373–81.CrossRefPubMedPubMedCentralGoogle Scholar
  199. 199.
    Raftopoulos R, Hickman SJ, Toosy A, Sharrack B, Mallik S, Paling D, et al. Phenytoin for neuroprotection in patients with acute optic neuritis: a randomised, placebo-controlled, phase 2 trial. Lancet Neurol. 2016;15(3):259–69.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. Lancet. 2017;390(10111):2481–9.CrossRefGoogle Scholar
  201. 201.
    Chataway J, Schuerer N, Alsanousi A, Chan D, MacManus D, Hunter K, et al. Effect of high-dose simvastatin on brain atrophy and disability in secondary progressive multiple sclerosis (MS-STAT): a randomised, placebo-controlled, phase 2 trial. Lancet. 2014;383(9936):2213–21.CrossRefPubMedPubMedCentralGoogle Scholar
  202. 202.
    Tourbah A, Lebrun-Frenay C, Edan G, Clanet M, Papeix C, Vukusic S, et al. MD1003 (high-dose biotin) for the treatment of progressive multiple sclerosis: a randomised, double-blind, placebo-controlled study. Mult Scler. 2016;22(13):1719–31.CrossRefPubMedPubMedCentralGoogle Scholar
  203. 203.
    Kremer D, Gottle P, Flores-Rivera J, Hartung HP, Kury P. Remyelination in multiple sclerosis: from concept to clinical trials. Curr Opin Neurol. 2019;32(3):378–84.CrossRefPubMedPubMedCentralGoogle Scholar
  204. 204.
    Amtmann D, Bamer AM, Kim J, Chung H, Salem R. People with multiple sclerosis report significantly worse symptoms and health related quality of life than the US general population as measured by PROMIS and NeuroQoL outcome measures. Disabil Health J. 2018;11(1):99–107.CrossRefPubMedPubMedCentralGoogle Scholar
  205. 205.
    Giovannoni G, Butzkueven H, Dhib-Jalbut S, Hobart J, Kobelt G, Pepper G, et al. Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord. 2016;9(Suppl 1):S5–S48.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Collin C, Ehler E, Waberzinek G, Alsindi Z, Davies P, Powell K, et al. A double-blind, randomized, placebo-controlled, parallel-group study of Sativex, in subjects with symptoms of spasticity due to multiple sclerosis. Neurol Res. 2010;32(5):451–9.CrossRefPubMedPubMedCentralGoogle Scholar
  207. 207.
    Novotna A, Mares J, Ratcliffe S, Novakova I, Vachova M, Zapletalova O, et al. A randomized, double-blind, placebo-controlled, parallel-group, enriched-design study of nabiximols∗ (Sativex((R))), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. Eur J Neurol. 2011;18(9):1122–31.CrossRefPubMedPubMedCentralGoogle Scholar
  208. 208.
    Moulin D, Boulanger A, Clark AJ, Clarke H, Dao T, Finley GA, et al. Pharmacological management of chronic neuropathic pain: revised consensus statement from the Canadian Pain Society. Pain Res Manag. 2014;19(6):328–35.CrossRefPubMedPubMedCentralGoogle Scholar
  209. 209.
    Aharony SM, Lam O, Corcos J. Treatment of lower urinary tract symptoms in multiple sclerosis patients: review of the literature and current guidelines. Can Urol Assoc J. 2017;11(3–4):E110–5.CrossRefPubMedPubMedCentralGoogle Scholar
  210. 210.
    Stankoff B, Waubant E, Confavreux C, Edan G, Debouverie M, Rumbach L, et al. Modafinil for fatigue in MS: a randomized placebo-controlled double-blind study. Neurology. 2005;64(7):1139–43.CrossRefPubMedPubMedCentralGoogle Scholar
  211. 211.
    Asano M, Finlayson ML. Meta-analysis of three different types of fatigue management interventions for people with multiple sclerosis: exercise, education, and medication. Mult Scler Int. 2014;2014:798285.PubMedPubMedCentralGoogle Scholar
  212. 212.
    Gaede G, Tiede M, Lorenz I, Brandt AU, Pfueller C, Dorr J, et al. Safety and preliminary efficacy of deep transcranial magnetic stimulation in MS-related fatigue. Neurol Neuroimmunol Neuroinflamm. 2018;5(1):e423.CrossRefPubMedPubMedCentralGoogle Scholar
  213. 213.
    Amato MP, Langdon D, Montalban X, Benedict RH, DeLuca J, Krupp LB, et al. Treatment of cognitive impairment in multiple sclerosis: position paper. J Neurol. 2013;260(6):1452–68.CrossRefPubMedPubMedCentralGoogle Scholar
  214. 214.
    Fiest KM, Walker JR, Bernstein CN, Graff LA, Zarychanski R, Abou-Setta AM, et al. Systematic review and meta-analysis of interventions for depression and anxiety in persons with multiple sclerosis. Mult Scler Relat Disord. 2016;5:12–26.CrossRefPubMedPubMedCentralGoogle Scholar
  215. 215.
    Brenner P, Piehl F. Fatigue and depression in multiple sclerosis: pharmacological and non-pharmacological interventions. Acta Neurol Scand. 2016;134(Suppl 200):47–54.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Massimo Filippi
    • 1
    • 2
    • 3
    • 4
  • Maria A. Rocca
    • 2
  1. 1.Neurology UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  2. 2.Neuroimaging Research UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  3. 3.Neurophysiology UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  4. 4.Vita-Salute San Raffaele UniversityMilanoItaly

Personalised recommendations