Alleviation of Stress-Induced Ethylene-Mediated Negative Impact on Crop Plants by Bacterial ACC Deaminase: Perspectives and Applications in Stressed Agriculture Management

  • Hassan EtesamiEmail author
  • Fatemeh Noori
  • Ali Ebadi
  • Narges Reiahi Samani
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 25)


The environmental stresses such as heavy metal toxicity, salinity, water deficit, flooding, extreme temperatures, nutrient deficiency, and pathogenicity, which are considered to be the most important limiting factors for agricultural production, are rising all over the world. The occurrence and magnitude of environmental (abiotic and biotic) stresses might augment in the near future because of global climate change. These stresses lead to a significant reduction in yield and growth of stressed plants. It is well known that a sizable portion of the damage that occurs in stress-sensitive crop varieties as a consequence of abiotic and biotic stresses is due to the deleterious action of “stress ethylene” and not necessarily from the direct effects of the stress. In order to reduce the negative effects of “stress ethylene” on growth and yield of stressed plants, application of ecologically compatible and environmentally friendly methods is needed. An alternative approach to reducing stress-induced ethylene production in growing plants in stress-affected soils involves employing 1-aminocyclopropane-1-carboxylate (ACC) deaminase-generating bacterial endophytes. These bacteria may promote stressed plant’s growth as a consequence of expressing the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase which cleaves 1-aminocyclopropane-1-carboxylate (ACC) (prerequisite of ethylene production) to α-ketobutyrate and ammonia and thereby diminishes ethylene levels in stressed host plants. In this review, the role of bacterial endophytes equipped with the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase in mitigating stress-induced ethylene-mediated negative impact on stressed plants under various environmental stresses (heavy metal toxicity, salinity, water deficit (drought), flooding, extreme temperatures, and nutrient deficiency) is described. In addition, some suggestions that are needed for future research in this context are also presented.


Bacterial endophytes Bio-fertilizer Environmental stress Drought stress Heavy metal stress Salinity stress Stress ethylene 



We wish to thank University of Tehran for providing the necessary facilities for doing the study.


  1. Abeles FB (1992) Ethylene in plant biology. In: Abeles, FB, Morgan, PW, Saltveit ME (eds) Academic Press, New YorkGoogle Scholar
  2. Abeles FB, Morgan PW, Saltveit Jr ME (2012) Ethylene in plant biology. Academic pressGoogle Scholar
  3. Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311(5757):91–94PubMedCrossRefPubMedCentralGoogle Scholar
  4. Acquaah G (2009) Principles of plant genetics and breeding. WileyGoogle Scholar
  5. Adam G, Duncan HJ (1999) Effect of diesel fuel on growth of selected plant species. Environ Geochem Health 21(4):353–357CrossRefGoogle Scholar
  6. Afridi MS, Mahmood T, Salam A, Mukhtar T, Mehmood S, Ali J, Khatoon Z, Bibi M, Javed MT, Sultan T (2019) Induction of tolerance to salinity in wheat genotypes by plant growth promoting endophytes: Involvement of ACC deaminase and antioxidant enzymes. Plant Physiol Biochem 139:569–577PubMedCrossRefPubMedCentralGoogle Scholar
  7. Ahanger MA, Akram NA, Ashraf M, Alyemeni MN, Wijaya L, Ahmad P (2017) Plant responses to environmental stresses—from gene to biotechnology. AoB Plants 9(4)Google Scholar
  8. Ahuja I, de Vos RCH, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15(12):664–674PubMedPubMedCentralCrossRefGoogle Scholar
  9. Albacete A, Martinez‐Andujar C, Ghanem ME, Acosta M, Sánchez‐Bravo J, Asins MJ, Cuartero J, Lutts S, Dodd IC, Pérez‐Alfocea F (2009) Rootstock‐mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence, and increased leaf area and crop productivity in salinized tomato. Plant Cell Environ 32(7):928–938CrossRefGoogle Scholar
  10. Alexandratos N, Bruinsma J (2012) World agriculture towards 2030/2050: the 2012 revisionGoogle Scholar
  11. Ali S, Charles TC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefPubMedCentralGoogle Scholar
  12. Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107(4):1049PubMedPubMedCentralCrossRefGoogle Scholar
  13. Arbona V, Marco AJ, Iglesias DJ, López-Climent MF, Talon M, Gómez-Cadenas A (2005) Carbohydrate depletion in roots and leaves of salt-stressed potted Citrus clementina L. Plant Growth Regul 46(2):153–160CrossRefGoogle Scholar
  14. Arshad M, Frankenberger Jr WT (2012) Ethylene: agricultural sources and applications. Springer Science & Business MediaGoogle Scholar
  15. Arshad M, Frankenberger WT (1990) Ethylene accumulation in soil in response to organic amendments. Soil Sci Soc Am J 54(4):1026–1031CrossRefGoogle Scholar
  16. Arshad M, Saleem M, Hussain S (2007) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 25(8):356–362PubMedCrossRefPubMedCentralGoogle Scholar
  17. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with plant growth promoting rhizobacteria containing ACC-deaminase partially eliminates the effects of water stress on growth, yield and ripening of Pisum sativum L. Pedosphere 18(5):611–620CrossRefGoogle Scholar
  18. Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afr J Biotechnol 2(6):157–160CrossRefGoogle Scholar
  19. Barka EA, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72(11):7246–7252CrossRefGoogle Scholar
  20. Barnawal D, Bharti N, Tripathi A, Pandey SS, Chanotiya CS, Kalra A (2016) ACC-deaminase-producing endophyte Brachybacterium paraconglomeratum strain SMR20 ameliorates Chlorophytum salinity stress via altering phytohormone generation. J Plant Growth Regul 35(2):553–564CrossRefGoogle Scholar
  21. Bartoli CG, Casalongué CA, Simontacchi M, Marquez-Garcia B, Foyer CH (2013) Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress. Environ Exper Bot 94:73–88CrossRefGoogle Scholar
  22. Bashan Y (1994) Symptom expression and ethylene production in leaf blight of cotton caused by Alternaria macrospora and Alternaria alternata alone and in combination. Can J Bot 72(11):1574–1579CrossRefGoogle Scholar
  23. Baxter A, Mittler R, Suzuki N (2013) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240PubMedCrossRefPubMedCentralGoogle Scholar
  24. Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp. Bot 58(6):1485–1495PubMedCrossRefPubMedCentralGoogle Scholar
  25. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47(7):642–652PubMedCrossRefPubMedCentralGoogle Scholar
  26. Bensalim S, Nowak J, Asiedu SK (1998) A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75(3):145–152CrossRefGoogle Scholar
  27. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Chem Biol 12(4):431–434CrossRefGoogle Scholar
  28. Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant, Cell Environ 22(4):425–431CrossRefGoogle Scholar
  29. Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor, in waterlogged tomato plants. Plant Physiol 65(2):322–326PubMedPubMedCentralCrossRefGoogle Scholar
  30. Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2(2):48–54CrossRefGoogle Scholar
  31. Carmen B, Roberto D (2011) Soil bacteria support and protect plants against abiotic stresses. Abiotic stress in plants-Mechanisms and daptations, Italy, pp 143–170Google Scholar
  32. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth–promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63(6):1670–1680CrossRefGoogle Scholar
  33. Chaudhary D, Sindhu SS (2017) Amelioration of salt stress in chickpea (Cicer arietinum L.) by coinculation of ACC deaminase-containing rhizospheric bacteria with Mesorhizobium strains. Legume Res 40(1):80–86Google Scholar
  34. Cheeseman JM (2015) The evolution of halophytes, glycophytes and crops, and its implications for food security under saline conditions. New Phytol 206(2):557–570PubMedCrossRefGoogle Scholar
  35. Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol 106(1):45–51PubMedPubMedCentralCrossRefGoogle Scholar
  36. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53(7):912–918PubMedCrossRefGoogle Scholar
  37. Chinnusamy V, Zhu J, Zhu J-K (2006) Salt stress signaling and mechanisms of plant salt tolerance. In: Genetic engineering. Springer, pp 141–177Google Scholar
  38. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71(9):4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  39. Coupland D, Jackson MB (1991) Effects of mecoprop (an auxin analogue) on ethylene evolution and epinasty in two biotypes of Stellaria media. Ann Bot 68(2):167–172CrossRefGoogle Scholar
  40. Cuartero J, Fernández-Muñoz R (1998) Tomato and salinity. Sci Hortic 78(1–4):83–125CrossRefGoogle Scholar
  41. Davies W, Zhang J, Yang J, Dodd I (2011) Novel crop science to improve yield and resource use efficiency in water-limited agriculture. J Agric Sci 149(S1):123–131CrossRefGoogle Scholar
  42. De Prado JL, De Prado RA, Shimabukuro RH (1999) The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. Pestic Biochem Physiol 63(1):1–14CrossRefGoogle Scholar
  43. Dell’Amico E, Cavalca L, Andreoni V (2005) Analysis of rhizobacterial communities in perennial Graminaceae from polluted water meadow soil, and screening of metal-resistant, potentially plant growth-promoting bacteria. FEMS Microbiol Ecol 52(2):153–162PubMedCrossRefGoogle Scholar
  44. Dharmasiri N, Estelle M (2004) Auxin signaling and regulated protein degradation. Trends Plant Sci 9(6):302–308PubMedCrossRefGoogle Scholar
  45. Dimkpa C, Weinand T, Asch F (2009) Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant, Cell Environ 32(12):1682–1694CrossRefGoogle Scholar
  46. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2004) Will modifying plant ethylene status improve plant productivity in water-limited environments, 2005Google Scholar
  47. Dodd IC, Pérez-Alfocea F (2012) Microbial amelioration of crop salinity stress. J Exp Bot 63(9):3415–3428PubMedCrossRefGoogle Scholar
  48. Donate-Correa J, León-Barrios M, Pérez-Galdona R (2005) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266(1–2):261–272CrossRefGoogle Scholar
  49. Dong H, Zhen Z, Peng J, Chang L, Gong Q, Wang NN (2011) Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis. J Exp Bot 62(14):4875–4887PubMedPubMedCentralCrossRefGoogle Scholar
  50. Elad Y (1988) Involvement of ethylene in the disease caused by Botrytis cinerea on rose and carnation flowers and the possibility of control. Ann Appl Biol 113(3):589–598CrossRefGoogle Scholar
  51. Ellouzi H, Hamed KB, Hernández I, Cela J, Müller M, Magné C, Abdelly C, Munné-Bosch S (2014) A comparative study of the early osmotic, ionic, redox and hormonal signaling response in leaves and roots of two halophytes and a glycophyte to salinity. Planta 240(6):1299–1317PubMedCrossRefGoogle Scholar
  52. Else MA, Hall KC, Arnold GM, Davies WJ, Jackson MB (1995) Export of abscisic acid, 1-aminocyclopropane-1-carboxylic acid, phosphate, and nitrate from roots to shoots of flooded tomato plants (accounting for effects of xylem sap flow rate on concentration and delivery). Plant Physiol 107(2):377–384PubMedPubMedCentralCrossRefGoogle Scholar
  53. Else MA, Jackson MB (1998) Transport of 1-aminocyclopropane-1-carboxylic acid (ACC) in the transpiration stream of tomato (Lycopersicon esculentum) in relation to foliar ethylene production and petiole epinasty. Funct Plant Biol 25(4):453–458CrossRefGoogle Scholar
  54. El-Tarabily KA (2008) Promotion of tomato (Lycopersicon esculentum Mill) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308(1–2):161–174CrossRefGoogle Scholar
  55. Etesami H (2018) Bacterial mediated alleviation of heavy metal stress and decreased accumulation of metals in plant tissues: mechanisms and future prospects. Ecot Environ Saf 147:175–191. Scholar
  56. Etesami H, Alikhani HA (2016) Rhizosphere and endorhiza of oilseed rape (Brassica napus L) plant harbor bacteria with multifaceted beneficial effects. Biol Control 94:11–24CrossRefGoogle Scholar
  57. Etesami H, Alikhani HA (2018) Bacillus species as the most promising bacterial biocontrol agents in rhizosphere and endorhiza of plants grown in rotation with each other. Eur J Plant Pathol 150(2):497–506. Scholar
  58. Etesami H, Beattie GA (2017) Plant-microbe interactions in adaptation of agricultural crops to abiotic stress conditions. In: Probiotics and plant health. Springer, pp 163–200Google Scholar
  59. Etesami H, Beattie GA (2018) Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front Microbiol 9:148PubMedPubMedCentralCrossRefGoogle Scholar
  60. Etesami H, Maheshwari DK (2018) Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: action mechanisms and future prospects. Ecot Environ Saf 156:225–246. Scholar
  61. Fahad S, Nie L, Chen Y, Wu C, Xiong D, Saud S, Hongyan L, Cui K, Huang J (2015) Crop plant hormones and environmental stress. In: Sustainable agriculture reviews. Springer, pp 371–400Google Scholar
  62. FAO (2008) FAO land and plant nutrition management serviceGoogle Scholar
  63. Farwell AJ, Vesely S, Nero V, Rodriguez H, Shah S, Dixon DG, Glick BR (2006) The use of transgenic canola (Brassica napus) and plant growth-promoting bacteria to enhance plant biomass at a nickel-contaminated field site. Plant Soil 288(1–2):309–318CrossRefGoogle Scholar
  64. Feng J, Barker AV (1992) Ethylene evolution and ammonium accumulation by tomato plants under water and salinity stresses. Part II. J Plant Nutr 15(11):2471–2490CrossRefGoogle Scholar
  65. Frankenberger Jr WT, Muhammad A (1995) Phytohormones in soils: microbial production and function. Marcel Dekker IncGoogle Scholar
  66. Frommer WB, Ludewig U, Rentsch D (1999) Taking transgenic plants with a pinch of salt. Science 285(5431):1222–1223PubMedCrossRefPubMedCentralGoogle Scholar
  67. Gamalero E, Marzachì C, Galetto L, Veratti F, Massa N, Bona E, Novello G, Glick B, Ali S, Cantamessa S (2017) An 1-Aminocyclopropane-1-carboxylate (ACC) deaminase-expressing endophyte increases plant resistance to flavescence dorée phytoplasma infection. Plant Biosystems-An Int J Dealing with all Aspects of Plant Biol 151(2):331–340CrossRefGoogle Scholar
  68. García MJ, Lucena C, Romera FJ, Alcántara E, Pérez-Vicente R (2010) Ethylene and nitric oxide involvement in the up-regulation of key genes related to iron acquisition and homeostasis in Arabidopsis. J Exp Bot 61(14):3885–3899PubMedCrossRefPubMedCentralGoogle Scholar
  69. García MJ, Romera FJ, Lucena C, Alcántara E, Pérez-Vicente R (2015) Ethylene and the regulation of physiological and morphological responses to nutrient deficiencies. Plant Physiol 169(1):51–60PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L). J Exp Bot 59(11):3039–3050PubMedPubMedCentralCrossRefGoogle Scholar
  71. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth-promoting bacilli facilitate the seedling growth of canola Brassica campestris. Plant Physiol Biochem 41(3):277–281CrossRefGoogle Scholar
  72. Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can Journal Microbiol 41(2):109–117CrossRefGoogle Scholar
  73. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. ScientificaGoogle Scholar
  74. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39. Scholar
  75. Glick BR, Cheng Z, Czarny J, Duan J (2007a) Promotion of plant growth by ACC deaminase-producing soil bacteria. In: New perspectives and approaches in plant growth-promoting rhizobacteria research. Springer, pp 329–339Google Scholar
  76. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190(1):63–68PubMedPubMedCentralCrossRefGoogle Scholar
  77. Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B (2007b) Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26(5–6):227–242CrossRefGoogle Scholar
  78. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 327(5967):812–818PubMedPubMedCentralCrossRefGoogle Scholar
  79. Gorham J, Jones RGW, McDonnell E (1985) Some mechanisms of salt tolerance in crop plants. In: Biosalinity in action: bioproduction with saline water. Springer, pp 15–40Google Scholar
  80. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37(3):395–412CrossRefGoogle Scholar
  81. Greenberg BM, Huang XD, Gerwing P, Yu XM, Chang P, Wu SS, Gerhardt K, Nykamp J, Lu X, Glick B (2008) Phytoremediation of salt impacted soils: greenhouse and the field trials of plant growth promoting rhizobacteria (PGPR) to improve plant growth and salt phytoaccumulation, pp 627–637Google Scholar
  82. Greenberg BM, Huang XD, Gurska Y, Gerhardt KE, Wang W, Lampi MA, Zhang C, Khalid A, Isherwood D, Chang P (2006) Successful field tests of a multi-process phytoremediation system for decontamination of persistent petroleum and organic contaminants, pp 389–400Google Scholar
  83. Greenway H, Munns R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Plant Physiol 31(1):149–190CrossRefGoogle Scholar
  84. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd Co, Cu, Ni, Pb, and Zn. J Biotechnol 81(1):45–53PubMedCrossRefPubMedCentralGoogle Scholar
  85. Grichko VP, Glick BR (2001a) Amelioration of flooding stress by ACC deaminase-containingplant growth-promoting bacteria. Plant Physiol Biochem 39(1):11–17CrossRefGoogle Scholar
  86. Grichko VP, Glick BR (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlledby the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39(1):19–25CrossRefGoogle Scholar
  87. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27(5):1231–1240CrossRefGoogle Scholar
  88. Habib SH, Kausar H, Saud HM (2016) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res IntGoogle Scholar
  89. Hayat R, Ahmed I, Sheirdil RA (2012) An overview of plant growth promoting rhizobacteria (PGPR) for sustainable agriculture. In: Crop product agri improve. Springer, pp 557–579Google Scholar
  90. He C-J, Morgan PW, Drew MC (1992) Enhanced sensitivity to ethylene in nitrogen-or phosphate-starved roots of Zea mays L during aerenchyma formation. Plant Physiol 98(1):137–142PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hipkins MF, Hillman JR (1986) Plant growth substances and the ionic permeability of membranes. In: Plant growth substances 1985. Springer, pp 151–158Google Scholar
  92. Holguin G, Patten CL (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. World SciGoogle Scholar
  93. Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agri Bioll Chem 42(10):1825–1831Google Scholar
  94. Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Environ Microbiol 71(11):7556–7558PubMedPubMedCentralCrossRefGoogle Scholar
  95. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Responses of plants to creosote during phytoremediation and their significance for remediation processes. Environ Pollut 130:453–463PubMedCrossRefPubMedCentralGoogle Scholar
  96. Hussain S, Peng S, Fahad S, Khaliq A, Huang J, Cui K, Nie L (2015) Rice management interventions to mitigate greenhouse gas emissions: a review. Environ Sci Pollut Res 22(5):3342–3360CrossRefGoogle Scholar
  97. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Ann Rev Plant Biol 47(1):377–403CrossRefGoogle Scholar
  98. Jackson M (1997) Hormones from roots as signals for the shoots of stressed plants. Trends Plant Sci 2(1):22–28CrossRefGoogle Scholar
  99. Jamil A, Riaz S, Ashraf M, Foolad M (2011) Gene expression profiling of plants under salt stress. Crit Rev Plant Sci 30(5):435–458CrossRefGoogle Scholar
  100. Kang S-M, Shahzad R, Bilal S, Khan AL, Park Y-G, Lee K-E, Asaf S, Khan MA, Lee I-J (2019) Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol 19(1):80Google Scholar
  101. Karthikeyan B, Joe MM, Islam MR, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56(2):77–86CrossRefGoogle Scholar
  102. Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42CrossRefGoogle Scholar
  103. Khan MIR, Khan NA (2013) Salicylic acid and jasmonates: approaches in abiotic stress tolerance. J Plant Biochem Physiol 1(4)Google Scholar
  104. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7(2):39–44CrossRefGoogle Scholar
  105. Kogan FN (1997) Global drought watch from space. Bull Am Meteor Soc 78(4):621–636CrossRefGoogle Scholar
  106. Kohler J, Caravaca F, Carrasco L, Roldan A (2006) Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manag 22(3):298–304CrossRefGoogle Scholar
  107. Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019a) Drought-Tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer Singapore, Singapore, pp 255–308. Scholar
  108. Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019b) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer Singapore, Singapore, pp 19–65. Scholar
  109. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi, volume 2: perspective for value-added products and environments. Springer International Publishing, Cham, pp 1–64. Scholar
  110. Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic pressGoogle Scholar
  111. Kukreja S, Nandwal A, Kumar N, Sharma S, Unvi V, Sharma P (2005) Plant water status, H 2 O 2 scavenging enzymes, ethylene evolution and membrane integrity of Cicer arietinum roots as affected by salinity. Biol Plant 49(2):305–308CrossRefGoogle Scholar
  112. Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308. Scholar
  113. Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60(12):3311–3336PubMedCrossRefPubMedCentralGoogle Scholar
  114. Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV (2002) Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek 81(1–4):373–383PubMedCrossRefPubMedCentralGoogle Scholar
  115. Ma H, Song L, Shu Y, Wang S, Niu J, Wang Z, Yu T, Gu W, Ma H (2012) Comparative proteomic analysis of seedling leaves of different salt tolerant soybean genotypes. J Prote 75(5):1529–1546CrossRefGoogle Scholar
  116. Mattoo AK (2017) The plant hormone ethylene: 0. CRC pressGoogle Scholar
  117. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem: PPB 42(6):565–572. Scholar
  118. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42(6):565–572PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mayak S, Tirosh T, Glick BR (2004c) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166(2):525–530CrossRefGoogle Scholar
  120. McDonnell L, Plett JM, Andersson-Gunnerås S, Kozela C, Dugardeyn J, Van Der Straeten D, Glick BR, Sundberg B, Regan S (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Planta 136(1):94–109CrossRefGoogle Scholar
  121. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T, Yokoi D, Ito H, Matsui H, Honma M (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-l-carboxylate deaminase from Hansenula saturnus. J Biochem 123(6):1112–1118PubMedCrossRefPubMedCentralGoogle Scholar
  122. Moeder W, Barry CS, Tauriainen AA, Betz C, Tuomainen J, Utriainen M, Grierson D, Sandermann H, Langebartels C, Kangasjärvi J (2002) Ethylene synthesis regulated by biphasic induction of 1-aminocyclopropane-1-carboxylic acid synthase and 1-aminocyclopropane-1-carboxylic acid oxidase genes is required for hydrogen peroxide accumulation and cell death in ozone-exposed tomato. Plant Physiol 130(4):1918–1926PubMedPubMedCentralCrossRefGoogle Scholar
  123. Morgan PW, Drew MC (1997) Ethylene and plant responses to stress. Physiol Planta 100(3):620–630CrossRefGoogle Scholar
  124. Morgan PW, Gausman HW (1966) Effects of ethylene on auxin transport. Plant Physiol 41(1):45–52PubMedPubMedCentralCrossRefGoogle Scholar
  125. Munns R (2002) Comparative physiology of salt and water stress. Plant, Cell Environ 25(2):239–250CrossRefGoogle Scholar
  126. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663PubMedCrossRefPubMedCentralGoogle Scholar
  127. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedPubMedCentralCrossRefGoogle Scholar
  128. Nadeem SM, Zahir ZA, Naveed M, Arshad M, Shahzad SM (2006) Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ 25(2):78–84Google Scholar
  129. Nascimento F, Brígido C, Glick B, Oliveira S, Alho L (2012) Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints. Lett Appl Microbiol 55(1):15–21PubMedCrossRefPubMedCentralGoogle Scholar
  130. Nascimento FX, Rossi MJ, Soares CRFS, McConkey BJ, Glick BR (2014) New insights into 1-aminocyclopropane-1-carboxylate (ACC) deaminase phylogeny, evolution and ecological significance. PLoS ONE 9(6):e99168PubMedPubMedCentralCrossRefGoogle Scholar
  131. Noori F, Etesami H, Najafi Zarini H, Khoshkholgh-Sima NA, Hosseini Salekdeh G, Alishahi F (2018) Mining alfalfa (Medicago sativa L) nodules for salinity tolerant non-rhizobial bacteria to improve growth of alfalfa under salinity stress. Ecot Environ Saf 162:129–138. Scholar
  132. O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274(5294):1914–1917PubMedCrossRefPubMedCentralGoogle Scholar
  133. Olson DC, Oetiker JH, Yang SF (1995) Analysis of LE-ACS3, a 1-aminocyclopropane-1-carboxylic acid synthase gene expressed during flooding in the roots of tomato plants. J Biol Chem 270(23):14056–14061PubMedCrossRefGoogle Scholar
  134. Orozco-Mosqueda M, Duan J, DiBernardo M, Zetter E, Campos-Garcia J, Glick BR, Santoyo G (2019) The production of ACC deaminase and trehalose by the plant growth promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Front Microbiol 10:1392Google Scholar
  135. Palaniyandi S, Damodharan K, Yang S, Suh J (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’tomato plants. J Appl Microbiol 117(3):766–773PubMedCrossRefGoogle Scholar
  136. Pandey P, Kang SC, Maheshwari DK (2005) Isolation of endophytic plant growth promoting Burkholderia sp. MSSP from root nodules of Mimosa pudica. Curr Sci 177–180Google Scholar
  137. Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecot Environ Saf 60(3):324–349CrossRefGoogle Scholar
  138. Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68(8):3795–3801PubMedPubMedCentralCrossRefGoogle Scholar
  139. Paul D (2013) Osmotic stress adaptations in rhizobacteria. J Basic Microbiol 53(2):101–110PubMedCrossRefPubMedCentralGoogle Scholar
  140. Pech J-C (2002) Ethylene: agricultural sources and applicationsCrossRefGoogle Scholar
  141. Peng J, Li Z, Wen X, Li W, Shi H, Yang L, Zhu H, Guo H (2014) Salt-induced stabilization of EIN3/EIL1 confers salinity tolerance by deterring ROS accumulation in Arabidopsis. PLoS Genet 10(10):e1004664PubMedPubMedCentralCrossRefGoogle Scholar
  142. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant, Cell Environ 26(2):189–199CrossRefGoogle Scholar
  143. Plett JM, McDonnell L, Regan S (2009) Plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase activity implicated in different aspects of plant development. Plant Sign Behav 4(12):1186–1189CrossRefGoogle Scholar
  144. Prasad MN, Strzalka K (2013) Physiology and biochemistry of metal toxicity and tolerance in plants. Springer Science & Business MediaGoogle Scholar
  145. Prayitno J, Rolfe BG, Mathesius U (2006) The ethylene-insensitive sickle mutant of Medicago truncatula shows altered auxin transport regulation during nodulation. Plant Physiol 142(1):168–180PubMedPubMedCentralCrossRefGoogle Scholar
  146. Qin S, Zhang Y-J, Yuan B, Xu P-Y, Xing K, Wang J, Jiang J-H (2014) Isolation of ACC deaminase-producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress. Plant Soil 374(1–2):753–766CrossRefGoogle Scholar
  147. Rabhi M, Barhoumi Z, Ksouri R, Abdelly C, Gharsalli M (2007) Interactive effects of salinity and iron deficiency in Medicago ciliaris. CR Biol 330(11):779–788CrossRefGoogle Scholar
  148. Rai AK, Sharma N (2006) Phosphate metabolism in the cyanobacterium Anabaena doliolum under salt stress. Current Microbiol 52(1):6–12PubMedCrossRefPubMedCentralGoogle Scholar
  149. Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:16–142Google Scholar
  150. Rasche F, Marco-Noales E, Velvis H, van Overbeek LS, López MM, van Elsas JD, Sessitsch A (2006a) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289(1–2):123–140CrossRefGoogle Scholar
  151. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006b) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43(3):555–566CrossRefGoogle Scholar
  152. Reed ML, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth-promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51(12):1061–1069PubMedCrossRefPubMedCentralGoogle Scholar
  153. Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289(5486):1922–1925PubMedCrossRefGoogle Scholar
  154. Rodecap KD, Tingey DT, Tibbs JH (1981) Cadmium-induced ethylene production in bean plants. Zeitschrift für Pflanzenphysiologie 105(1):65–74CrossRefGoogle Scholar
  155. Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124PubMedCrossRefGoogle Scholar
  156. Ruiz D, Martínez V, Cerdá A (1997) Citrus response to salinity: growth and nutrient uptake. Tree Physiol 17(3):141–150PubMedCrossRefGoogle Scholar
  157. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertility Soil 42(3):267–272CrossRefGoogle Scholar
  158. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Indust Microbiol Biotechnol 34(10):635–648CrossRefGoogle Scholar
  159. Saleh S, Huang X-D, Greenberg BM, Glick BR (2004) Phytoremediation of persistent organic contaminants in the environment. In: Applied bioreme phytorem. Springer, pp 115–134Google Scholar
  160. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102(5):1283–1292PubMedCrossRefGoogle Scholar
  161. Sarkar A, Ghosh PK, Pramanik K, Mitra S, Soren T, Pandey S, Mondal MH, Maiti TK (2018) A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res Microbiol 169(1):20–32PubMedCrossRefGoogle Scholar
  162. Saud S, Li X, Chen Y, Zhang L, Fahad S, Hussain S, Sadiq A, Chen Y (2014) Silicon application increases drought tolerance of Kentucky bluegrass by improving plant water relations and morphophysiological functions. Sci World JGoogle Scholar
  163. Sgroy V, Cassán F, Masciarelli O, Del Papa MF, Lagares A, Luna V (2009) Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl Microbiol Biotechnol 85(2):371–381PubMedCrossRefPubMedCentralGoogle Scholar
  164. Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112(7):1209–1221PubMedPubMedCentralCrossRefGoogle Scholar
  165. Shahbaz M, Ashraf M (2013) Improving salinity tolerance in cereals. Crit Rev Plant Sci 32(4):237–249CrossRefGoogle Scholar
  166. Sharma SB, Sayyed RZ, Trivedi MH, Gobi TA (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2(1):587PubMedPubMedCentralCrossRefGoogle Scholar
  167. Sharp RE (2002) Interaction with ethylene: changing views on the role of abscisic acid in root and shoot growth responses to water stress. Plant, Cell Environ 25(2):211–222CrossRefGoogle Scholar
  168. Shi Y, Tian S, Hou L, Huang X, Zhang X, Guo H, Yang S (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of CBF and type-A ARR genes in Arabidopsis. Plant Cell 24(6):2578–2595PubMedPubMedCentralCrossRefGoogle Scholar
  169. Shinozaki K, Yamaguchi-Shinozaki K (1998) Molecular responses to drought stress. Elsevier Science BV, AmsterdamCrossRefGoogle Scholar
  170. Siddikee MA, Sundaram S, Chandrasekaran M, Kim K, Selvakumar G, Sa T (2015) Halotolerant bacteria with ACC deaminase activity alleviate salt stress effect in canola seed germination. J Korean Soc Appl Biol Chem 58(2):237–241CrossRefGoogle Scholar
  171. Singh N, Kashyap S (2012) In silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. J Molec Model 18(9):4101–4111CrossRefGoogle Scholar
  172. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter. Vegetos 28(1):86–99Google Scholar
  173. Singh RP, Jha PN (2016) Mitigation of salt stress in wheat plant (Triticum aestivum) by ACC deaminase bacterium Enterobacter sp. SBP-6 isolated from Sorghum bicolor. Acta Physiol Planta 38(5):110Google Scholar
  174. Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21(2):197–203PubMedCrossRefGoogle Scholar
  175. Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21(3):193–210PubMedCrossRefPubMedCentralGoogle Scholar
  176. Steffens B, Kovalev A, Gorb SN, Sauter M (2012) Emerging roots alter epidermal cell fate through mechanical and reactive oxygen species signaling. Plant Cell 24(8):3296–3306PubMedPubMedCentralCrossRefGoogle Scholar
  177. Strzelczyk E, Kampert M, Pachlewski R (1994) The influence of pH and temperature on ethylene production by mycorrhizal fungi of pine. Mycorrhiza 4(5):193–196CrossRefGoogle Scholar
  178. Sturz AV, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15(2):183–190CrossRefGoogle Scholar
  179. Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd G, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46(6):961–970PubMedCrossRefPubMedCentralGoogle Scholar
  180. Sziderics A, Rasche F, Trognitz F, Sessitsch A, Wilhelm E (2007) Bacterial endophytes contribute to abiotic stress adaptation in pepper plants (Capsicum annuum L). Can J Microbiol 53(11):1195–1202PubMedCrossRefPubMedCentralGoogle Scholar
  181. Tao J-J, Chen H-W, Ma B, Zhang W-K, Chen S-Y, Zhang J-S (2015) The role of ethylene in plants under salinity stress. Front Plant Sci 6:1059PubMedPubMedCentralCrossRefGoogle Scholar
  182. Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Molec Plant-Microbe Interac 12(11):951–959PubMedCrossRefPubMedCentralGoogle Scholar
  183. Tittabutr P, Piromyou P, Longtonglang A, Noisa-Ngiam R, Boonkerd N, Teaumroong N (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59(4):559–571CrossRefGoogle Scholar
  184. Tuteja N (2007) Mechanisms of high salinity tolerance in plants. In: Methods in enzymology, vol 428. Elsevier, pp 419–438Google Scholar
  185. Upadhyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition. Curr Microbiol 59(5):489–496PubMedCrossRefPubMedCentralGoogle Scholar
  186. Van Loon LC, Bakker P, Pieterse CMJ (1997) Mechanisms of PGPR-induced resistance against pathogensGoogle Scholar
  187. van Loon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Molecular ecotoxicology of plants. Springer, pp 177–205Google Scholar
  188. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016a) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58PubMedPubMedCentralCrossRefGoogle Scholar
  189. Verma P, Yadav AN, Khannam KS, Mishra S, Kumar S, Saxena AK, Suman A (2016b) Appraisal of diversity and functional attributes of thermotolerant wheat associated bacteria from the peninsular zone of India. Saudi J Biol Sci. Scholar
  190. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  191. Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-Solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: volume 1: microbes for sustainable crop production. Springer Singapore, Singapore, pp 125–149. Scholar
  192. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-Microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer Singapore, Singapore, pp 543–580. Scholar
  193. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305(1):42–48PubMedCrossRefPubMedCentralGoogle Scholar
  194. Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24CrossRefGoogle Scholar
  195. Wang C, Knill E, Glick BR, Défago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gac A derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46(10):898–907PubMedCrossRefPubMedCentralGoogle Scholar
  196. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218(1):1–14PubMedCrossRefPubMedCentralGoogle Scholar
  197. Wilhite DA (2000) Drought as a natural hazard: concepts and definitionsGoogle Scholar
  198. Win KT, Tanaka F, Okazaki K, Ohwaki Y (2018) The ACC deaminase expressing endophyte Pseudomonas spp. Enhances NaCl stress tolerance by reducing stress-related ethylene production, resulting in improved growth, photosynthetic performance, and ionic balance in tomato plants. Plant Physiol Biochem 127:599–607PubMedCrossRefPubMedCentralGoogle Scholar
  199. Xu J, Li Y, Wang Y, Liu H, Lei L, Yang H, Liu G, Ren D (2008) Activation of MAPK kinase 9 induces ethylene and camalexin biosynthesis and enhances sensitivity to salt stress in Arabidopsis. J Biol Chem 283(40):26996–27006PubMedCrossRefPubMedCentralGoogle Scholar
  200. Xu Z, Jiang Y, Jia B, Zhou G (2016) Elevated-CO2 response of stomata and its dependence on environmental factors. Front Plant Sci 7:657PubMedPubMedCentralGoogle Scholar
  201. Yadav AN (2017a) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  202. Yadav AN (2017b) Beneficial role of extremophilic microbes for plant health and soil fertility. J Agric Sci 1:1–4Google Scholar
  203. Yadav AN, Kour D, Sharma S, Sachan SG, Singh B, Chauhan VS, Sayyed RZ, Kaushik R, Saxena AK (2019a) Psychrotrophic microbes: biodiversity, mechanisms of adaptation, and biotechnological implications in alleviation of cold stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer Singapore, Singapore, pp 219–253. Scholar
  204. Yadav AN, Kumar V, Prasad R, Saxena AK, Dhaliwal HS (2018a) Microbiome in Crops: Diversity, distribution and potential role in crops improvements. In: Prasad R, Gill SS, Tuteja N (eds) Crop improvement through microbial biotechnology. Elsevier, USA, pp 305–332CrossRefGoogle Scholar
  205. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693PubMedPubMedCentralCrossRefGoogle Scholar
  206. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150PubMedPubMedCentralGoogle Scholar
  207. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108PubMedPubMedCentralCrossRefGoogle Scholar
  208. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017a) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8. Scholar
  209. Yadav AN, Verma P, Kumar S, Kumar V, Kumar M, Singh BP, Saxena AK, Dhaliwal HS (2018b) Actinobacteria from rhizosphere: molecular diversity, distributions and potential biotechnological applications. In: Singh B, Gupta V, Passari A (eds) New and future developments in microbial biotechnology and bioengineering. USA, pp 13–41. Scholar
  210. Yadav AN, Verma P, Sachan SG, Kaushik R, Saxena AK (2018c) Psychrotrophic microbiomes: molecular diversity and beneficial role in plant growth promotion and soil health. In: Panpatte DG, Jhala YK, Shelat HN, Vyas RV (eds) Microorganisms for green revolution-volume 2: microbes for sustainable agro-ecosystem. Springer, Singapore, pp 197–240. Scholar
  211. Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017b) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16Google Scholar
  212. Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108CrossRefGoogle Scholar
  213. Yamaguchi T, Blumwald E (2005) Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci 10(12):615–620PubMedCrossRefPubMedCentralGoogle Scholar
  214. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14(1):1–4. Scholar
  215. Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by Pseudomonas putida Rs-198 on cotton. Eur J Soil Biol 46(1):49–54CrossRefGoogle Scholar
  216. Yoolong S, Kruasuwan W, Phạm HTT, Jaemsaeng R, Jantasuriyarat C, Thamchaipenet A (2019) Modulation of salt tolerance in Thai jasmine rice (Oryza sativa L. cv. KDML105) by Streptomyces venezuelae ATCC 10712 expressing ACC deaminase. Sci Rep 9(1):1275Google Scholar
  217. Yousfi S, Mahmoudi H, Abdelly C, Gharsalli M (2007) Effect of salt on physiological responses of barley to iron deficiency. Plant Physiol Biochem 45(5):309–314PubMedCrossRefPubMedCentralGoogle Scholar
  218. Yuquan X, Rong S, Zhixing L (1999) Quickly screening a strain of Pseudomonas B8 with both ACC deaminase activity and antagonism against Fusarium oxysporumGoogle Scholar
  219. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18(5):958–963PubMedPubMedCentralGoogle Scholar
  220. Zhang F, Zhang H, Wang G, Xu L, Shen Z (2009) Cadmium-induced accumulation of hydrogen peroxide in the leaf apoplast of Phaseolus aureus and Vicia sativa and the roles of different antioxidant enzymes. J Hazard Mater 168(1):76–84PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zhang Y-f, He L-y, Chen Z-j, Zhang W-h, Wang Q-y, Qian M, Sheng X-f (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186(2–3):1720–1725PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zhao L, Xu Y, Lai X-H, Shan C, Deng Z, Ji Y (2015) Screening and characterization of endophytic Bacillus and Paenibacillus strains from medicinal plant Lonicera japonica for use as potential plant growth promoters. Braz J Microbiol 46(4):977–989PubMedPubMedCentralCrossRefGoogle Scholar
  223. Zheng D, Han X, An YI, Guo H, Xia X, Yin W (2013) The nitrate transporter NRT2. 1 functions in the ethylene response to nitrate deficiency in A rabidopsis. Plant, Cell Environ 36 (7):1328–1337CrossRefGoogle Scholar
  224. Zhu JK (2001) Plant salt stress. e LSGoogle Scholar
  225. Zhu J-K (2002) Salt and drought stress signal transduction in plants. Ann Rev Plant Biol 53(1):247–273CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hassan Etesami
    • 1
    Email author
  • Fatemeh Noori
    • 2
  • Ali Ebadi
    • 3
  • Narges Reiahi Samani
    • 4
  1. 1.Department of Soil ScienceUniversity College of Agriculture and Natural Resources, University of TehranTehranIran
  2. 2.Department of Biotechnology and Plant BreedingSari Agricultural Sciences and Natural Resources UniversitySariIran
  3. 3.Agriculture Biotechnology Research Institute of Iran (ABRII), AREEOKarajIran
  4. 4.Department of Agronomy and Plant BreedingSari Agricultural Sciences and Natural Resources UniversitySariIran

Personalised recommendations