Phase Change Materials for Building Envelope

  • Benjamin DurakovićEmail author
Part of the Green Energy and Technology book series (GREEN)


PCM-based technology for building application seems to be promising but at the same time, it is a relatively new area for the research especially in its application in large-scale systems. This chapter provides an overview of PCMs suitable for integration within the building envelope. In that regard, phase change theory, PCM classification and properties are discussed. For passive building design strategies in cases the PCM is integrated within the building envelope, a higher latent heat of fusion of PCM and a lower thermal conductivity are desirable. The chapter provides properties analysis of commercially available material suitable for passive design.


  1. 1.
    Rathod MK, Kanzaria HV (2011) A methodological concept for phase change material selection based on multiple criteria decision analysis with and without fuzzy environment. Mater Des 32(6):3578–3585CrossRefGoogle Scholar
  2. 2.
    Telkes M, Raymond E (1949) Storing solar heat in chemicals—a report on the Dover house. Heat Ventilat 46(11):80–86Google Scholar
  3. 3.
    Sokolov M, Keizman Y (1991) Performance indicators for solar pipes with phase change storage. Sol Energy 47(5):339–346CrossRefGoogle Scholar
  4. 4.
    Fath HE (1998) Technical assessment of solar thermal energy storage technologies. Renew Energy 14(1–4):35–40CrossRefGoogle Scholar
  5. 5.
    Mettaweea E-BS, Assassab GM (2006) Experimental study of a compact PCM solar collector. Energy 31(14):2958–2968CrossRefGoogle Scholar
  6. 6.
    Shuklaa A, Buddhib D, Sawhneya R (2009) Solar water heaters with phase change material thermal energy storage medium: a review. Renew Sustain Energy Rev 13(8):2119–2125CrossRefGoogle Scholar
  7. 7.
    Kuznik F, David D, Johannes K, Jean-Jacques R (2011) A review on phase change materials integrated in building walls. Renew Sustain Energy Rev 15:379–391CrossRefGoogle Scholar
  8. 8.
    Scalata S, Banua D, Hawesa D, Parishb J, Haghighataa F, Feldman D (1996) Full scale thermal testing of latent heat storage in wallboard. Solar Energy Mater Solar Cells 44(1):49–61CrossRefGoogle Scholar
  9. 9.
    Shileia L, Guohuib F, Nenga Z, Li D (2007) Experimental study and evaluation of latent heat storage in phase change materials wallboards. Energy Build 39(10):1088–1091CrossRefGoogle Scholar
  10. 10.
    Zhou G, Yang Y, Wang X, Zhou S (2009) Numerical analysis of effect of shape-stabilized phase change material plates in a building combined with night ventilation. Appl Energy 86(1):52–59CrossRefGoogle Scholar
  11. 11.
    Lin K, Zhang Y, Xu X, Di H, Yang R, Qin P (2005) Experimental study of under-floor electric heating system with shape-stabilized PCM plates. Energy Build 37(3):215–220CrossRefGoogle Scholar
  12. 12.
    Nagano K, Takeda S, Mochida T, Shimakura K, Nakamura T (2006) Study of a floor supply air conditioning system using granular phase change material to augment building mass thermal storage—heat response in small scale experiments. Energy Build 38(5):436–446CrossRefGoogle Scholar
  13. 13.
    Lu T (2000) Thermal management of high power electronics with phase change cooling. Int J Heat Mass Transf 43(13):2245–2256zbMATHCrossRefGoogle Scholar
  14. 14.
    Kandasamy R, Wang X-Q, Mujumdar AS (2007) Application of phase change materials in thermal management of electronics. Appl Therm Eng 27(17–18):2822–2832CrossRefGoogle Scholar
  15. 15.
    Tan F, Tso C (2004) Cooling of mobile electronic devices using phase change materials. Appl Therm Eng 24(2–3):159–169CrossRefGoogle Scholar
  16. 16.
    Gin B, Farid MM (2010) The use of PCM panels to improve storage condition of frozen food. J Food Eng 100(2):372–376CrossRefGoogle Scholar
  17. 17.
    Nomura T, Okinaka N, Akiyama T (2010) Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant. Resour Conserv Recycl 54(11):1000–1006CrossRefGoogle Scholar
  18. 18.
    Ying B-A, Kwok Y-L, Li Y, Zhu Q-Y, Yeung C-Y (2004) Assessing the performance of textiles incorporating phase change materials. Polym Testing 23(5):541–549CrossRefGoogle Scholar
  19. 19.
    Rathod MK, Banerjee J (2013) Thermal stability of phase change materials used in latent heat energy storage systems: a review. Renew Sustain Energy Rev 18:246–258CrossRefGoogle Scholar
  20. 20.
    Zalba B, Marı́n JM, Cabeza LF, Mehling H (2003) Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng 23(3):251–283CrossRefGoogle Scholar
  21. 21.
    Dinçer İ, Rosen MA (2002) Thermal energy storage—systems and applications. Wiley, HobokenGoogle Scholar
  22. 22.
    Mehling H, Cabeza LF (2008) Heat and cold storage with PCM: an up to date introduction into basics and applications. Springer, BerlinCrossRefGoogle Scholar
  23. 23.
    Sharma A, Tyagib VV, Chena CR, Buddhib D (2009) Review on thermal energy storage with phase change materials and applications. Renew Sustain Energy Rev 13(2):318–345CrossRefGoogle Scholar
  24. 24.
    Ghoneim AA (1989) Comparison of theoretical models of phase-change and sensible heat storage for air and water-based solar heating systems. Sol Energy 42(3):209–220CrossRefGoogle Scholar
  25. 25.
    Morisson A-K (1978) Effects of phase-change energy storage on the performance of air-based and liquid-based solar heating systems. Sol Energy 20(1):57–67CrossRefGoogle Scholar
  26. 26.
    Sharma SD, Sagara K (2005) Latent heat storage materials and systems: a review. Int J Green Energy 2:1–56CrossRefGoogle Scholar
  27. 27.
    Buddhi D, Sawhney R (1994) Proceeding of thermal energy storage and energy conversion. School of energy and environmental studies. In: Devi Ahilya University, Indore, IndiaGoogle Scholar
  28. 28.
    Abhat A (1981) Development of a modular heat exchanger with an integrated latent heat storage. Report no. BMFT FBT 81-050, German Ministry of Science and Technology, BonnGoogle Scholar
  29. 29.
    Sharma SD, Kitano H, Sagara K (2004) Phase change materials for low temperature solar thermal applications. Res Rep Fac Eng Mie Univ 29:31–64Google Scholar
  30. 30.
    Abhat A (1983) Low temperature latent heat thermal energy storage: heat storage materials. Sol Energy 30(4):313–332CrossRefGoogle Scholar
  31. 31.
    Goia F, Boccaleri E (2016) Physical–chemical properties evolution and thermal properties reliability of a paraffin wax under solar radiation exposure in a real-scale PCM window system. Energy Build 119:41–50CrossRefGoogle Scholar
  32. 32.
    Alkan C, Kaya K, Sari A (2009) Preparation, thermal properties and thermal reliability of form-stable paraffin/polypropylene composite for thermal energy storage. J Polym Environ 17(4):254–258CrossRefGoogle Scholar
  33. 33.
    Hadjieva M, Kanev S, Argirov J (1992) Thermophysical properties some paraffins applicable thermal energy storage. Sol Energy Mater Sol Cells 27(2):181–187CrossRefGoogle Scholar
  34. 34.
    Sharma S, Buddhi D, Sawhney RL (1999) Accelerated thermal cycle test of latent heat storage materials. Sol Energy 66(6):483–490CrossRefGoogle Scholar
  35. 35.
    Shukla A, Buddhi D, Sawhney RL (2008) Thermal cycling test of few selected inorganic and organic phase change materials. RenewableEnergy 33(12):2606–2614CrossRefGoogle Scholar
  36. 36.
    Lane GA (1983) Solar heat storage: latent heat materials, 1st edn. CRC Press, FloridaGoogle Scholar
  37. 37.
    Hasnain SM (1998) Review on sustainable thermal energy storage technologies, part I: heat storage materials and techniques. Energy Conserv Manag 39(11):1127–1138CrossRefGoogle Scholar
  38. 38.
    Hasan A, Sayigh AA (1994) Some fatty acids as phase-change thermal energy storage materials. Renew Energy 4(1):69–76CrossRefGoogle Scholar
  39. 39.
    Sari A, Kaygusuz K (2003) Some fatty acids used for latent heat storage: thermal stability and corrosion of metals with respect to thermal cycling. Renew Energy 28(6):939–948CrossRefGoogle Scholar
  40. 40.
    Alvia JZ, Imranb M, Peia G, Lia J, Gaoa G, Alvic J (2017) Thermodynamic comparison and dynamic simulation of direct and indirect solar organic Rankine cycle systems with PCM storage. 1(129):716–723Google Scholar
  41. 41.
    Estevesa LP, Magalhãesb A, Ferreirab V, Pinhoc C (2017) Evolution of global heat transfer coefficient on PCM energy storage cycles. Energy Procedia 1(136):188–195CrossRefGoogle Scholar
  42. 42.
    Durakovic B, Yildiz G, Yahia ME (2020) Comparative performance evaluation of conventional and renewable thermal insulation materials used in building envelops. Tehnicki vjesnik—Technical Gazette 27(1) In PressGoogle Scholar
  43. 43.
    Miró L, Barreneche C, Ferrer G, Solé A, Martorell I, Cabeza LF (2016) Health hazard, cycling and thermal stability as key parameters when selecting a suitable. Phase Change Material (PCM) 1(16):1–20Google Scholar
  44. 44.
    Saffari M, Gracia Ad, Fernández C, Cabeza LF (2017) Simulation-based optimization of PCM melting temperature to improve the energy performance in buildings. Appl Energy 1(202):420–434CrossRefGoogle Scholar
  45. 45.
    Edsjø S, Bjørn K, Jelle P (2015) Phase change materials for building applications: a state-of-the-art review and future research opportunities. Energy Build 1(1):1–16Google Scholar
  46. 46.
    Goia F (2012) Thermo-physical behaviour and energy performance assessment of PCM glazing system configurations: a numerical analysis. Front Archit Res 1(1):341–347CrossRefGoogle Scholar
  47. 47.
    Durakovic B, Torlak M (2017) Simulation and experimental validation of phase change material and water. JMES 8(5):1837–1846Google Scholar
  48. 48.
    Durakovic B, Torlak M (2017) Experimental and numerical study of a PCM window model as a thermal energy storage unit. Int J Low-Carbon Technol 12(3):272–280Google Scholar
  49. 49.
    Liu C, Wu Y, Zhu Y, Li D, Ma L (2017) Experimental investigation of optical and thermal performance of a PCM-glazed unit for building applications. Energy Build 1(1):1–30CrossRefGoogle Scholar
  50. 50.
    Liu Changyu, Wu Y, Li D, Zhou Y, Wang Z, Liu X (2017) Effect of PCM thickness and melting temperature on thermal performance of double glazing units. Journal of Building Engineering 11(1):87–95CrossRefGoogle Scholar
  51. 51.
    Li D, Li Z, Zheng Y, Liu C, Hussein AK, Liu X (2016) Thermal performance of a PCM-filled double-glazing unit with different thermophysical parameters of PCM. Sol Energy 133(1):207–220CrossRefGoogle Scholar
  52. 52.
    Li D, Ma T, Liu C, Zheng Yumeng, Wang Z, Liu X (2016) Thermal performance of a PCM-filled double glazing unit with different optical properties of phase change material. Energy Build 119(1):143–152CrossRefGoogle Scholar
  53. 53.
    Duraković B, Mešetović S (2019) Thermal performances of glazed energy storage systems with various storage materials: an experimental study. Sustain Cit Soc 45:422–430CrossRefGoogle Scholar
  54. 54.
    Torlak M, Delalić N, Duraković B, Gavranović H (2014) CFD-based assessment of thermal energy storage in phase-change materials—(PCM). In: International energy technologies conference proceedings—ENTECH’2014, Istanbul, TurkeyGoogle Scholar
  55. 55.
    Xie J, Wang W, Liu J, Pan S (2018) Thermal performance analysis of PCM wallboards for building application based on numerical simulation. Solar Energy 1(162):533–540CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina

Personalised recommendations