Advertisement

IL-17 Signaling in the Tumor Microenvironment

  • R. M. GorczynskiEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1240)

Abstract

Inflammation is recognized as representing a double-edged sword in terms of tumor growth, in some instances contributing to attenuation of growth and in others to enhanced progression and metastasis. Extracellular signals, released by cells within the tumor microenvironment (TME), including cancer cells themselves, as well as infiltrating immune cells, stromal cells, and other components of the extracellular matrix, all can contribute to reshaping the tumor microenvironment (TME) and tumor growth/survival. Most recently, attention has centered on contributions in the TME made by the pro-inflammatory interleukin 17 (IL-17) and the T cells (Th17) and non-T cells which produce this cytokine, as well as the target cells (IL-17 receptor positive, IL-17R+) signaled by IL-17. The IL-17 family itself comprises at least six members, IL-17A, IL-17B, IL-17C, IL-17D, IL-17E (also called IL-25), and IL-17F, all of which are known to be secreted as disulfide-linked homo- or heterodimers. These in turn bind to IL-17R, a type I cell surface receptor, of which at least five variants have been described to date, IL-17RA to IL-17RE. The discussion below focuses on what we know to date about the role of IL-17/IL-17R interactions in the tumor microenvironment in regulation of tumor growth and metastasis and highlights recent ideas concerning the possible utility of this knowledge in the clinic.

Keywords

IL-17 isoforms Il-17R isoforms IL-6 Immunoregulation Cytokines Chronic lymphocytic leukemia (CLL) Cancer Tumor microenvironment (TME) Tumor growth/survival Tumor metastasis/invasion Checkpoint blockade Inflammation Extracellular signaling Regulatory T cells (Tregs) Immunotherapy 

References

  1. 1.
    Joyce JA, Fearon DT (2015) T cell exclusion, immune privilege, and the tumor microenvironment. Science 348:74–80PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    He D, Li H, Yusuf N, Elmets CA, Li J, Mountz JD, Xu H (2010) IL-17 promotes tumor development through the induction of tumor promoting microenvironments at tumor sites and myeloid-derived suppressor cells. J Immunol 184:2281–2288PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Quail DF, Joyce JA (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bowman RL, Joyce JA (2014) Therapeutic targeting of tumor-associated macrophages and microglia in glioblastoma. Immunotherapy 6:663–666PubMedCrossRefGoogle Scholar
  5. 5.
    Beyer M, Schultze JL (2006) Regulatory T cells in cancer. Blood 108:804–811PubMedCrossRefGoogle Scholar
  6. 6.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998PubMedCrossRefGoogle Scholar
  7. 7.
    Mantovani A, Romero P, Palucka AK, Marincola FM (2008) Tumor immunity: effector response to tumor and role of the microenvironment. Lancet 371:771–783PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Fabre J, Giustiniani J, Garbar C, Antonicelli F, Merrouche Y, Bensussan A, Bagot M, Al DR (2016) Targeting the tumor microenvironment: the protumor effects of IL-17 related to cancer type. Int J Mol Sci 17:1433–1440PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    Yao Z, Painter SL, Fanslow WC, Ulrich D, Macduff BM, Spriggs MK, Armitage RJ (1995) Human IL-17: a novel cytokine derived from T cells. J Immunol 155:5483–5486PubMedPubMedCentralGoogle Scholar
  10. 10.
    Majumder S, Amatya N, Revu S, Jawale CV, Wu D, Rittenhouse N, Menk A, Kupul S, Du F, Raphael I, Bhattacharjee A, Siebenlist U, Hand TW, Delgoffe GM, Poholek AC, Gaffen SL, Biswas PS, McGeachy MJ (2019) IL-17 metabolically reprograms activated fibroblastic reticular cells for proliferation and survival. Nat Immunol.  https://doi.org/10.1038/s41590-019-0367-4. [Epub ahead of print]PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Maniati E, Soper R, Hagemann T (2010) Up for mischief? IL-17/Th17 in the tumor microenvironment. Oncogene 29:5653–5662PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Su X, Ye J, Hsueh EC, Zhang Y, Hoft DF, Peng G (2010) Tumor microenvironments direct the recruitment and expansion of human Th17 cells. J Immunol 184:1630–1641PubMedCrossRefGoogle Scholar
  13. 13.
    Miyashita M, Sasano H, Tamaki K, Hirakawa H, Takahashi Y, Nakagawa S, Watanabe G, Tada H, Suzuki A, Ohuchi N et al (2015) Prognostic significance of tumor-infiltrating CD8+ and FOXP3+ lymphocytes in residual tumors and alterations in these parameters after neoadjuvant chemotherapy in triple-negative breast cancer: a retrospective multicenter study. Breast Cancer Res 17:124–137PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64:477–485PubMedCrossRefGoogle Scholar
  15. 15.
    Yang XO, Pappu BP, Nurieva R, Akimzhanov A, Kang HS, Chung Y, Ma L, Shah B, Panopoulos AD, Schluns KS et al (2008) T helper 17 lineage differentiation is programmed by orphan nuclear receptors RORα and RORγ. Immunity 28:29–39PubMedCrossRefGoogle Scholar
  16. 16.
    Zhou L, Ivanov II, Spolski R, Min R, Shenderov K, Egawa T, Levy DE, Leonard WJ, Littman DR (2007) IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974PubMedCrossRefGoogle Scholar
  17. 17.
    Cua DJ, Sherlock J, Chen Y, Murphy CA, Joyce B, Seymour B, Lucian L, To W, Kwan S, Churakova T et al (2003) Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421:744–748PubMedCrossRefGoogle Scholar
  18. 18.
    Wilson NJ, Boniface K, Chan JR, McKenzie BS, Blumenschein WM, Mattson JD, Basham B, Smith K, Chen T, Morel F et al (2007) Development, cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957PubMedCrossRefGoogle Scholar
  19. 19.
    Kryczek I, Liu R, Wang G, Wu K, Shu X, Szeliga W, Vatan L, Finlayson E, Huang E, Simeone D et al (2009) FOXP3 defines regulatory T cells in human tumor and autoimmune disease. Cancer Res 69:3995–4000PubMedCrossRefGoogle Scholar
  20. 20.
    Kryczek I, Wei S, Gong W, Shu X, Szeliga W, Vatan L, Chen L, Wang G, Zou W (2008) Cutting edge: IFNγ enables APC to promote memory Th17 and abate Th1 cell development. J Immunol 181:5842–5846PubMedCrossRefGoogle Scholar
  21. 21.
    Martin-Orozco N, Muranski P, Chung Y, Yang XO, Yamazaki T, Lu S, Hwu P, Restifo NP, Overwijk WW, Dong C (2009) T helper 17 cells promote cytotoxic T cell activation in tumor immunity. Immunity 31:787–798PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH et al (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Song X, Qian Y (2013) The activation and regulation of IL-17 receptor mediated signaling. Cytokine 62:175–182.  https://doi.org/10.1016/j.cyto.2013.03.014. [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  24. 24.
    Xu S, Cao X (2010) Interleukin-17 and its expanding biological functions. Cell Mol Immunol 7:164–174PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen Z, O’Shea JJ (2008) Regulation of IL-17 production in human lymphocytes. Cytokine 41:71–78PubMedCrossRefGoogle Scholar
  26. 26.
    Kirkham BW, Kavanaugh A, Reich K (2014) Interleukin-17A: a unique pathway in immune-mediated diseases: psoriasis, psoriatic arthritis and rheumatoid arthritis. Immunology 141:133–142PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Toy D, Kugler D, Wolfson M, Vanden BT, Gurgel J, Derry J, Tocker J, Peschon J (2006) Cutting edge: interleukin 17 signals through a heteromeric receptor complex. J Immunol 177:36–39PubMedCrossRefGoogle Scholar
  28. 28.
    Shalom-Barak T, Quach J, Lotz M (1998) Interleukin-17-induced gene expression in articular chondrocytes is associated with activation of mitogen-activated protein kinases and NF-κB. J Biol Chem 273:27467–27473PubMedCrossRefGoogle Scholar
  29. 29.
    Sun F, Qu Z, Xiao Y, Zhou J, Burns TF, Stabile LP, Siegfried JM, Xiao G (2016) NF-κB1 p105 suppresses lung tumorigenesis through the Tpl2 kinase but independently of its NF-κB function. Oncogene 35:2299–2310.  https://doi.org/10.1038/onc.2015.299. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  30. 30.
    Ji Y, Zhang W (2010) Th17 cells: positive or negative role in tumor? Cancer Immunol Immunother 59:979–987PubMedCrossRefGoogle Scholar
  31. 31.
    Bronte V (2008) Th17 and cancer: friends or foes? Blood 112:214PubMedCrossRefGoogle Scholar
  32. 32.
    Kryczek I, Banerjee M, Cheng P, Vatan L, Szeliga W, Wei S, Huang E, Finlayson E, Simeone D, Welling TH, Chang A, Coukos G, Liu R, Zou W (2009) Phenotype, distribution, generation, and functional and clinical relevance of Th17 cells in the human tumor environments. Blood 114:1141–1149PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM (2009) Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin’s lymphoma. Cancer Res 69:5522–5530PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Horlock C, Stott B, Dyson PJ, Morishita M, Coombes RC, Savage P, Stebbing J (2009) The effects of trastuzumab on the CD4+CD25+FoxP3+ and CD4+IL17A+ T-cell axis in patients with breast cancer. Br J Cancer 100:1061–1067PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Muranski P, Boni A, Antony PA, Cassard L, Irvine KR, Kaiser A, Paulos CM, Palmer DC, Touloukian CE, Ptak K, Gattinoni L, Wrzesinski C, Hinrichs CS, Kerstann KW, Feigenbaum L, Chan CC, Restifo NP (2008) Tumor-specific Th17polarized cells eradicate large established melanoma. Blood 112:362–373PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dougan M, Dranoff G (2008) Inciting inflammation: the RAGE about tumor promotion. J Exp Med 205:267–270PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Colotta F, Allavena P, Sica A, Garlanda C, Mantovani A (2009) Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30:1073–1081PubMedCrossRefGoogle Scholar
  38. 38.
    Relation T, Yi T, Guess AJ, La Perle K, Otsuru S, Hasgur S, Dominici M, Breuer C, Horwitz EM (2018) Intratumoral delivery of interferonγ-secreting mesenchymal stromal cells repolarizes tumor-associated macrophages and suppresses neuroblastoma proliferation in vivo. Stem Cells 36(6):915–924.  https://doi.org/10.1002/stem.2801. Epub 2018 Feb 27CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Charles KA, Kulbe H, Soper R, Lawrence T, Schultheis A, Chakravarty P, Thompson RG, Kollias G, Smyth JF, Balkwill FR, Hagemann T (2009) The tumor promoting actions of TNF-alpha involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J Clin Invest 119:3011–3023PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Yang L, Liu H, Zhang L, Hu J, Chen H, Wang L, Yin X, Li Q, Qi Y (2016) Effect of IL-17 in the development of colon cancer in mice. Oncol Lett 12(6):4929–4936.  https://doi.org/10.3892/ol.2016.5329. Epub 2016 Oct 31CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Punt S, Langenhoff JM, Putter H, Fleuren GJ, Gorter A, Jordanova ES (2015) The correlations between IL-17 vs. Th17 cells and cancer patient survival: a systematic review. Oncoimmunology 4(2):e984547. eCollection 2015 FebPubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Lee EJ, Park HJ, Lee IJ, Kim WW, Ha SJ, Suh YG, Seong J (2014) Inhibition of IL-17A suppresses enhanced-tumor growth in low dose pre-irradiated tumor beds. PLoS One 9(9):e106423.  https://doi.org/10.1371/journal.pone.0106423. eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chen YS, Huang TH, Liu CL, Chen HS, Lee MH, Chen HW, Shen CR (2019) Locally targeting the IL-17/IL-17RA axis reduced tumor growth in a murine B16F10 melanoma model. Hum Gene Ther 30(3):273–285.  https://doi.org/10.1089/hum.2018.104. Epub 2018 Oct 3CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Darvishi B, Majidzadeh-A K, Ghadirian R, Mosayebzadeh M, Farahmand L (2019) Recruited bone marrow derived cells, local stromal cells and IL-17 at the front line of resistance development to anti-VEGF targeted therapies. Life Sci 217:34–40.  https://doi.org/10.1016/j.lfs.2018.11.033. Epub 2018 Nov 22CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Darrasse-Jeze G, Bergot A, Cordier C, Ngo-Abdalla S, Klatzmann D, Azogui O (2007) Regulatory T cells prevent CD8 T cell maturation by inhibiting CD4 Th cells at tumor sites. J Immunol 179:4969–4978PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nishikawa H, Kato T, Tawara I, Takemitsu T, Saito K, Wang L, Ikarashi Y, Wakasugi H, Nakayama T, Taniguchi M, Kuribayashi K, Old LJ, Shiku H (2005) Accelerated chemically induced tumor development mediated by CD4 +CD25+ regulatory T cells in wild-type hosts. Proc Natl Acad Sci U S A 102:9253–9257PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Kryczek I, Wei S, Zou L, Zhu G, Mottram P, Xu H, Chen L, Zou W (2006) Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 177:40–44PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Najafi S, Mirshafiey A (2019) The role of T helper 17 and regulatory T cells in tumor microenvironment. Immunopharmacol Immunotoxicol:1–9.  https://doi.org/10.1080/08923973.2019.1566925. [Epub ahead of print]PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Bettelli E, Carrier Y, Gao W, Korn T, Strom TB, Oukka M, Weiner HL, Kuchroo VK (2006) Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441:235–238PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Korn T, Bettelli E, Gao W, Awasthi A, Jäger A, Strom TB, Oukka M, Kuchroo VK (2007) IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature 448:484–487PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR (2008) TGF-β-induced Foxp3 inhibits TH17 cell differentiation by antagonizing RORγt function. Nature 453:236–240PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Downs-Canner S, Berkey S, Delgoffe GM, Edwards RP, Curiel T, Odunsi K, Bartlett DL, Obermajer N (2017) Suppressive IL-17A+Foxp3+ and ex-Th17 IL-17AnegFoxp3+ Treg cells are a source of tumour-associated Treg cells. Nat Commun 8:14649.  https://doi.org/10.1038/ncomms14649CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Barilla RM, Diskin B, Caso RC, Lee KB, Mohan N, Buttar C, Adam S, Sekendiz Z, Wang J, Salas RD, Cassini MF, Karlen J, Sundberg B, Akbar H, Levchenko D, Gakhal I, Gutierrez J, Wang W, Hundeyin M, Torres-Hernandez A, Leinwand J, Kurz E, Rossi JAK, Mishra A, Liria M, Sanchez G, Panta J, Loke P, Aykut B, Miller G (2019) Specialized dendritic cells induce tumor-promoting IL-10+IL-17+ FoxP3neg regulatory CD4+ T cells in pancreatic carcinoma. Nat Commun 10(1):1424.  https://doi.org/10.1038/s41467-019-09416-2CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Tartour E, Fossiez F, Joyeux I, Galinha A, Gey A, Claret E, Sastre-Garau X, Couturier J, Mosseri V, Vives V et al (1999) Interleukin 17, a T-cell-derived cytokine, promotes tumorigenicity of human cervical tumors in nude mice. Cancer Res 59:3698–3704. [PubMed] [Google Scholar]PubMedGoogle Scholar
  55. 55.
    Punt S, Fleuren GJ, Kritikou E, Lubberts E, Trimbos JB, Jordanova ES, Gorter A (2015) Angels and demons: Th17 cells represent a beneficial response, while neutrophil IL-17 is associated with poor prognosis in squamous cervical cancer. Oncoimmunology 4:e984539.  https://doi.org/10.4161/2162402X.2014.984539. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Haudenschild D, Moseley T, Rose L, Reddi AH (2002) Soluble and transmembrane isoforms of novel interleukin-17 receptor-like protein by RNA splicing and expression in prostate cancer. J Biol Chem 277:4309–4316.  https://doi.org/10.1074/jbc.M109372200. [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  57. 57.
    Steiner GE, Newman ME, Paikl D, Stix U, Memaran-Dagda N, Lee C, Marberger MJ (2003) Expression and function of pro-inflammatory interleukin IL-17 and IL-17 receptor in normal, benign hyperplastic, and malignant prostate. Prostate 56:171–182.  https://doi.org/10.1002/pros.10238. [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  58. 58.
    Zhang Q, Liu S, Parajuli KR, Zhang W, Zhang K, Mo Z, Liu J, Chen Z, Yang S, Wang AR et al (2016) Interleukin-17 promotes prostate cancer via MMP7-induced epithelial-to-mesenchymal transition. Oncogene.  https://doi.org/10.1038/onc.2016.240. [PMC free article] [PubMed] [CrossRef] [Google Scholar]PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Li B, Shi XY, Liao DX, Cao BR, Luo CH, Cheng SJ (2015) Advanced colorectal adenoma related gene expression signature may predict prognostic for colorectal cancer patients with adenoma-carcinoma sequence. Int J Clin Exp Med 8:4883–4898. [PMC free article] [PubMed] [Google Scholar]PubMedPubMedCentralGoogle Scholar
  60. 60.
    He D, Li H, Yusuf N, Elmets CA, Athar M, Katiyar SK, Xu H (2012) IL-17 mediated inflammation promotes tumor growth and progression in the skin. PLoS One 7:1433.  https://doi.org/10.1371/journal.pone.0032126. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefGoogle Scholar
  61. 61.
    Wang L, Yi T, Kortylewski M, Pardoll DM, Zeng D, Yu H (2009) IL-17 can promote tumor growth through an IL-6-STAT3 signaling pathway. J Exp Med 206:1457–1464.  https://doi.org/10.1084/jem.20090207. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Doroudchi M, Pishe ZG, Malekzadeh M, Golmoghaddam H, Taghipour M, Ghaderi A (2013) Elevated serum IL-17A but not IL-6 in glioma versus meningioma and schwannoma. Asian Pac J Cancer Prev 14:5225–5230.  https://doi.org/10.7314/APJCP.2013.14.9.5225. [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  63. 63.
    Parajuli P, Anand R, Mandalaparty C, Suryadevara R, Sriranga PU, Michelhaugh SK, Cazacu S, Finniss S, Thakur A, Lum LG et al (2016) Preferential expression of functional IL-17R in glioma stem cells: potential role in self-renewal. Oncotarget 7:6121–6135. [PMC free article] [PubMed] [Google Scholar]PubMedPubMedCentralGoogle Scholar
  64. 64.
    Wainwright DA, Sengupta S, Han Y, Ulasov IV, Lesniak MS (2010) The presence of IL-17A and T helper 17 cells in experimental mouse brain tumors and human glioma. PLoS One 5:1433.  https://doi.org/10.1371/journal.pone.0015390. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefGoogle Scholar
  65. 65.
    Hu J, Ye H, Zhang D, Liu W, Li M, Mao Y, Lu Y (2013) U87MG glioma cells overexpressing IL-17 accelerate early-stage growth in vivo and cause a higher level of CD31 mRNA expression in tumor tissues. Oncol Lett 6:993–999. [PMC free article] [PubMed] [Google Scholar]PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Zhu F, McCaw L, Spaner DE, Gorczynski RM (2018) Targeting the IL-17/IL-6 axis can alter growth of Chronic Lymphocytic Leukemia in vivo/in vitro. Leuk Res 66:28–38.  https://doi.org/10.1016/j.leukres.2018.01.006. Epub 2018 Jan 17CrossRefPubMedGoogle Scholar
  67. 67.
    Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F et al (2014) Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 7:ra63PubMedCrossRefGoogle Scholar
  68. 68.
    Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW et al (2007) Mesenchymal stem cells within tumor stroma promote breast cancer metastasis. Nature 449:557–563PubMedCrossRefGoogle Scholar
  69. 69.
    Suzuki K, Sun R, Origuchi M, Kanehira M, Takahata T et al (2011) Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med 17:579–587PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Shinagawa K, Kitadai Y, Tanaka M, Sumida T, Kodama M et al (2010) Mesenchymal stem cells enhance growth and metastasis of colon cancer. Int J Cancer 127:2323–2333PubMedCrossRefGoogle Scholar
  71. 71.
    Burgess M, Cheung C, Chambers L, Ravindranath K, Minhas G et al (2012) CCL2 and CXCL2 enhance survival of primary chronic lymphocytic leukemia cells in vitro. Leuk Lymphoma 53:1988–1998PubMedCrossRefGoogle Scholar
  72. 72.
    Wilson A, Trumpp A (2006) Bone-marrow hematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106PubMedCrossRefGoogle Scholar
  73. 73.
    Lai R, O’Brien S, Maushouri T, Rogers A, Kantarjian H et al (2002) Prognostic value of plasma interleukin-6 levels in patients with chronic lymphocytic leukemia. Cancer 95:1071–1075PubMedCrossRefGoogle Scholar
  74. 74.
    Tang D, Niu Q, Jiang N, Li J, Zheng Q et al (2014) Increased frequencies of Th17 in the peripheral blood of patients with chronic lymphocytic leukemia: a one year follow up. Pak J Med Sci 30:1128–1133PubMedPubMedCentralGoogle Scholar
  75. 75.
    Prabhala RH, Fulciniti M, Pelluru D, Rashid N, Nigroiu A et al (2015) Targeting IL17A in multiple myeloma: a potential novel therapeutic approach in myeloma. Leukemia 30:379–389PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Hunter CA, Jones SA (2015) IL-6 as a keystone cytokine in health and disease. Nat Immunol 16:448–457PubMedCrossRefGoogle Scholar
  77. 77.
    Heo T-H, Wahler J, Suh N (2016) Potential therapeutic implications of IL-6/IL-6R/ gp130-targeting agents in breast cancer. Oncotarget 7:15460–15473PubMedPubMedCentralGoogle Scholar
  78. 78.
    Lyon DE, McCain NL, Walter J, Schubert C (2008) Cytokine comparisons between women with breast cancer and women with a negative breast biopsy. Nurs Res 57:51–58.  https://doi.org/10.1097/01.NNR.0000280655.58266.6c. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Zhu X, Mulcahy LA, Mohammed RA, Lee AH, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM et al (2008) IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 10:95–106.  https://doi.org/10.1186/bcr2195. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefGoogle Scholar
  80. 80.
    Du JW, Xu KY, Fang LY, Qi XL (2012) Interleukin-17, produced by lymphocytes, promotes tumor growth and angiogenesis in a mouse model of breast cancer. Mol Med Rep 6:1099–1102.  https://doi.org/10.3892/mmr.2012.1036. [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  81. 81.
    Kim G, Khanal P, Lim SC, Yun HJ, Ahn SG, Ki SH, Choi HS (2013) Interleukin-17 induces AP-1 activity and cellular transformation via upregulation of tumor progression locus 2 activity. Carcinogenesis 34:341–350.  https://doi.org/10.1093/carcin/bgs342. [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedGoogle Scholar
  82. 82.
    Mombelli S, Cochaud S, Merrouche Y, Garbar C, Antonicelli F, Laprevotte E, Alberici G, Bonnefoy N, Eliaou JF, Bastid J et al (2015) IL-17A and its homologs IL-25/IL-17E recruit the c-RAF/S6 kinase pathway and the generation of pro-oncogenic LMW-E in breast cancer cells. Sci Rep 5:11874–11884.  https://doi.org/10.1038/srep11874. [PMC free article] [PubMed] [CrossRef] [Google Scholar]CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Gorczynski R, Chen Z, Erin N, Khatri I, Podnos A (2014) Comparison of immunity in mice cured of primary/metastatic growth of EMT6 or 4THM breast cancer by chemotherapy or immunotherapy. PLoS One 9(11):e113597.  https://doi.org/10.1371/journal.pone.0113597CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Erin N, Podnos A, Tanriover G, Duymus O, Cote E, Khatri I, Gorczynski RM (2015) Bidirectional effect of CD200 on breast cancer development and tumor invasion with ultimate outcome determined by tumor aggressiveness and a cancer-induced inflammatory response. Oncogene 34(29):3860–3870PubMedCrossRefGoogle Scholar
  85. 85.
    Gorczynski RM, Erin N, Zhu F (2016) Serum-derived exosomes from mice with highly metastatic breast cancer transfer increased metastatic capacity to a poorly metastatic tumor. Cancer Med 5(2):325–336.  https://doi.org/10.1002/cam4.575. Epub 2016 Jan 4CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Guo D, Chen Y, Wang S, Yu L, Shen Y, Zhong H, Yang Y (2018) Exosomes from heat-stressed tumor cells inhibit tumor growth by converting regulatory T cells to Th17 cells via IL-6. Immunology 154(1):132–143.  https://doi.org/10.1111/imm.12874. Epub 2018 Jan 2CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Knupfer H, Preiß R (2007) Significance of interleukin-6 (IL-6) in breast cancer. Breast Cancer Res Treat 102:129–135.  https://doi.org/10.1007/s10549-006-9328-3CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Benoy IH, Salgado R, Van Dam P, Geboers K, Van Marck E, Scharpé S, Vermeulen PB, Dirix LY (2004) Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clin Cancer Res 10(21):7157–7162PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Bar-Eli M (1999) Role of interleukin-8 in tumor growth and tumor invasion of human melanoma. Pathobiology 67:12–18.  https://doi.org/10.1159/000028045CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    XingWu Zhu X-W, Mulcahy LA, Mohammed RAA, Lee AHS, Franks HA, Kilpatrick L, Yilmazer A, Paish EC, Ellis IO, Patel PM, Jackson AM (2008) IL-17 expression by breast-cancer-associated macrophages: IL-17 promotes invasiveness of breast cancer cell lines. Breast Cancer Res 10:R95.  https://doi.org/10.1186/bcr2195CrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Coffelt SB, Kersten K, Doornebal CW, Weiden J, Vrijland K, Hau C-S, Verstegen NJM, Ciampricotti M, Hawinkels LJAC, Jonkers J, de Visser KE (2015) IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer tumor invasion. Nature 522:345–348.  https://doi.org/10.1038/nature14282CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Gorczynski RM, Erin N, Maqbool T, Gorczynski CP, Gorczynski LY (2018) Characterization of an in vitro model system to explore control of tumor invasion of EMT6 and 4THM breast tumors by CD200:CD200R interactions. Breast Cancer 25(5):547–559.  https://doi.org/10.1007/s12282-018-0851-y. Epub 2018 Mar 12CrossRefPubMedGoogle Scholar
  93. 93.
    Gorczynski RM, Zhu F (2017) Checkpoint blockade in solid tumors and B cell malignancies with special consideration of the role of CD200. Cancer Manag Res 9:601–609PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Ma YF, Chen C, Li D, Liu M, Lv ZW, Ji Y (2017) Targeting of interleukin (IL)-17A inhibits PDL1 expression in tumor cells and induces anticancer immunity in an estrogen receptor-negative murine model of breast cancer. Oncotarget 8(5):7614–7624.  https://doi.org/10.18632/oncotarget.13819CrossRefPubMedGoogle Scholar
  95. 95.
    Gorczynski RM, Zhu F, Chen Z, Kos O, Khatri I (2017) A comparison of serum miRNAs influencing metastatic growth of EMT6 vs 4THM tumor cells in wild-type and CD200R1KO mice. Breast Cancer Res Treat 162:255–266PubMedCrossRefGoogle Scholar
  96. 96.
    Gu K, Li MM, Shen J, Liu F, Cao JY, Jin S, Yu Y (2015) Interleukin-17-induced EMT promotes lung cancer cell migration and invasion via NF-κB/ZEB1 signal pathway. Am J Cancer Res 5(3):1169–1179. eCollection 2015PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Surgery & ImmunologyUniversity of TorontoTorontoCanada

Personalised recommendations