Advertisement

Conclusions and Outlook

  • Paulo André Dias GonçalvesEmail author
Chapter
  • 30 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Throughout this thesis we have investigated the salient features of plasmonics and light–matter interactions in various contexts and material platforms, and our considerations have comprised a diverse toolkit of classical, semiclassical, and quantum mechanical treatments. Special emphasis has been given to the incorporation of quantum surface corrections for rigorously modeling the emergence of nonclassical behavior in the nanoscopic limit. In closing, we summarize the contents of each chapter, followed by a brief discussion about new and potentially interesting opportunities arising from this work.

References

  1. 1.
    Rodrigo D, Limaj O, Janner D, Etezadi D, García deAbajo FJ, Pruneri V, Altug H (2015) Science 349(6244):165. https://science.sciencemag.org/content/349/6244/165,  https://doi.org/10.1126/science.aab2051
  2. 2.
    Kawata S, Tani T (1996) Opt Lett 21(21):1768 (1996). http://ol.osa.org/abstract.cfm?URI=ol-21-21-1768,  https://doi.org/10.1364/OL.21.001768
  3. 3.
    Zhang J, Liu W, Zhu Z, Yuan X, Qin S (2016) Sci Rep 6:38086.  https://doi.org/10.1038/srep38086
  4. 4.
    Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Phys Rev Lett 97:053002.  https://doi.org/10.1103/PhysRevLett.97.053002
  5. 5.
    Calafell IA, Cox JD, Radonjić M, Saavedra JRM, García de Abajo FJ, Rozema LA, Walther P (2019) npj Quantum Inf. 5:37.  https://doi.org/10.1038/s41534-019-0150-2
  6. 6.
    Thongrattanasiri S, Manjavacas A, García de Abajo FJ (2012) ACS Nano 6(2): 1766.  https://doi.org/10.1021/nn204780e
  7. 7.
    Christensen T, Wang W, Jauho AP, Wubs M, Mortensen NA (2014) Phys Rev B 90:241414.  https://doi.org/10.1103/PhysRevB.90.241414
  8. 8.
    Wedel KO, Mortensen NA, Thygesen KS, Wubs M (2018) Phys Rev B 98:155412.  https://doi.org/10.1103/PhysRevB.98.155412
  9. 9.
  10. 10.
    Garcia-Molina R, Gras-Marti A, Ritchie RH (1985) Phys Rev B 31:121.  https://doi.org/10.1103/PhysRevB.31.121
  11. 11.
    Boardman AD, Garcia-Molina R, Gras-Marti A, Louis E (1985) Phys Rev B 32:6045. https://doi.org/10.1103/PhysRevB.32.6045
  12. 12.
    Chen H (2009) J Opt A Pure Appl Opt 11(7):075102.  https://doi.org/10.1088/1464-4258/11/7/075102
  13. 13.
    Luo Y, Pendry JB, Aubry A (2010) Nano Lett 10(10):4186.  https://doi.org/10.1021/nl102498s
  14. 14.
    Kadic M, Guenneau S, Enoch S, Huidobro PA, Martín-Moreno L, García-Vidal FJ, Renger J, Quidant R (2012) Nanophotonics 1:51.  https://doi.org/10.1515/nanoph-2012-0011
  15. 15.
  16. 16.
  17. 17.
  18. 18.
    Chulkov EV, Osma J, Sarrıa I, Silkin VM, Pitarke JM (1999) Surf Sci 433–435:882. http://www.sciencedirect.com/science/article/pii/S003960289900148X,  https://doi.org/10.1016/S0039-6028(99)00148-X
  19. 19.
    Reiche D, Dalvit DAR, Busch K, Intravaia F (2017) Phys Rev B 95:155448.  https://doi.org/10.1103/PhysRevB.95.155448
  20. 20.
    Oelschläger M, Busch K, Intravaia F (2018) Phys Rev A 97:062507.  https://doi.org/10.1103/PhysRevA.97.062507
  21. 21.
    Reiche D, Oelschläger M, Busch K, Intravaia F (2019) J Opt Soc Am B 36(4):C52. http://josab.osa.org/abstract.cfm?URI=josab-36-4-C52,  https://doi.org/10.1364/JOSAB.36.000C52
  22. 22.
  23. 23.
    Lundeberg MB, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Science 357(6347):187. http://science.sciencemag.org/content/357/6347/187,  https://doi.org/10.1126/science.aan2735
  24. 24.
    Lee IH, Martin-Moreno L, Mohr DA, Khaliji K, Low T, Oh SH (2018) ACS Photonics 5(6):2208.  https://doi.org/10.1021/acsphotonics.8b00062
  25. 25.
    Chen S, Autore M, Li J, Li P, Alonso-González P, Yang Z, Martin-Moreno L, Hillenbrand R, Nikitin AY (2017) ACS Photonics 4(12):3089.  https://doi.org/10.1021/acsphotonics.7b00654
  26. 26.
    Lee IH, Yoo D, Avouris P, Low T, Oh SH (2019) Nat Nanotechnol 14(4):313.  https://doi.org/10.1038/s41565-019-0363-8
  27. 27.
    Palik ED (1997) Handbook of optical constants of solids, vol. 1–5. Academic PressGoogle Scholar
  28. 28.
    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt PS, Hinsche NF, Gjerding MN, Torelli D, Larsen PM, Riis-Jensen AC, Gath J, Jacobsen KW, Mortensen JJ, Olsen T, Thygesen KS (2018) 2D Mater. 5(4):042002. http://c2db.fysik.dtu.dk,  https://doi.org/10.1088/2053-1583/aacfc1
  29. 29.
    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli IE, Cepellotti A, Pizzi G, Marzari N (2018) Nat Nanotechnol 13:246. https://doi.org/10.1038/s41565-017-0035-5,  https://doi.org/10.24435/materialscloud:2017.0008/v3
  30. 30.
    Yang Y, Di Z, Yan W, Agarwal A, Zheng M, Joannopoulos JD, Lalanne P, Christensen T, Berggren KK, Soljačić M (2019) A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576(7786):248–252.  https://doi.org/10.1038/s41586-019-1803-1
  31. 31.
    Cuevas JC, García-Vidal FJ (2018) ACS Photonics 5(10):3896.  https://doi.org/10.1021/acsphotonics.8b01031
  32. 32.
    Raza S, Kadkhodazadeh S, Christensen T, Di Vece M, Wubs M, Mortensen NA, Stenger N (2015) Nat Commun 6:8788. https://www.nature.com/articles/ncomms9788,  https://doi.org/10.1038/ncomms9788
  33. 33.
    Campos A, Troc N, Cottancin E, Pellarin M, Weissker HC, Lermé J, Kociakand M, Hillenkamp M (2018) Nat Phys.  https://doi.org/10.1038/s41567-018-0345-z
  34. 34.
    Apell P (1981) Phys Scr 24(4):795.  https://doi.org/10.1088/0031-8949/24/4/019
  35. 35.
    Luo Y, Zhao R, Pendry JB (2014) Proc Natl Acad Sci USA 111(52):18422. https://www.pnas.org/content/111/52/18422,  https://doi.org/10.1073/pnas.1420551111
  36. 36.
    Bordag M, Klimchitskaya GL, Mohideen U, Mostepanenko VM (2009) Advances in the casimir effect. Oxford University Press, New YorkCrossRefGoogle Scholar
  37. 37.
    Tighineanu P, Sørensen AS, Stobbe S, Lodahl P (2017) Quantum dots for quantum information technologies. Springer, Berlin, pp 165–198.  https://doi.org/10.1007/978-3-319-56378-7_5
  38. 38.
    Andersen ML, Stobbe S, Sørensen AS, Lodahl P (2011) Nat Phys 7(3):215. https://www.nature.com/articles/nphys1870,  https://doi.org/10.1038/nphys1870
  39. 39.
    Jun Ahn K, Knorr A (2003) Phys Rev B 68:161307.  https://doi.org/10.1103/PhysRevB.68.161307
  40. 40.
    Rukhlenko ID, Handapangoda D, Premaratne M, Fedorov AV, Baranov AV, Jagadish C (2009) Opt Express 17(20):17570. http://www.opticsexpress.org/abstract.cfm?URI=oe-17-20-17570,  https://doi.org/10.1364/OE.17.017570
  41. 41.
    Stobbe S, Kristensen PT, Mortensen JE, Hvam JM, Mørk J, Lodahl P (2012) Phys Rev B 86:085304.  https://doi.org/10.1103/PhysRevB.86.085304
  42. 42.
    Zheng K, Žídek K, Abdellah M, Zhu N, Chábera P, Lenngren N, Chi Q, Pullerits T (2014) J Am Chem Soc 136(17):6259.  https://doi.org/10.1021/ja411127w
  43. 43.
    Neuman T, Esteban R, Casanova D, García-Vidal FJ, Aizpurua J (2018) Nano Lett 18(4):2358.  https://doi.org/10.1021/acs.nanolett.7b05297

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Nano OpticsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations