Advertisement

Fundamentals of Graphene Plasmonics

  • Paulo André Dias GonçalvesEmail author
Chapter
  • 42 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, we present the theoretical foundations for describing plasmonic excitations in graphene and in graphene-based systems. We start by considering plasmons supported by extended, continuous graphene sheets, and then move on to the treatment of plasmons in finite-sized graphene nanostructures and in patterned graphene. Along the way, we comment on several key features of graphene plasmons. It should be noted that although here particular emphasis is given to plasmons in graphene, the theoretical description set forth in this chapter can be swiftly applied to many other polaritonic excitations in the ever-increasing number of two-dimensional (2D) and quasi-2D materials.

References

  1. 1.
    Efetov DK, Kim P (2010) Phys Rev Lett 105:256805.  https://doi.org/10.1103/PhysRevLett.105.256805
  2. 2.
    Bezares FJ, Sanctis AD, Saavedra JRM, Woessner A, Alonso-González P, Amenabar I, Chen J, Bointon TH, Dai S, Fogler MM, Basov DN, Hillenbrand R, Craciun MF, García de Abajo FJ, Russo S, Koppens FHL (2017) Nano Lett 17(10):5908.  https://doi.org/10.1021/acs.nanolett.7b01603
  3. 3.
    Wang Z, Li T, Almdal K, Mortensen NA, Xiao S, Ndoni S (2016) Opt Lett 41(22):5345. http://ol.osa.org/abstract.cfm?URI=ol-41-22-5345,  https://doi.org/10.1364/OL.41.005345
  4. 4.
    Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn (World Scientific, Singapore.  https://doi.org/10.1142/9948
  5. 5.
    García de Abajo FJ (2014) ACS Photonics 1(3):135.  https://doi.org/10.1021/ph400147y
  6. 6.
    Grigorenko AN, Polini M, Novoselov KS (2012) Nat Photonics 6:749.  https://doi.org/10.1038/nphoton.2012.262
  7. 7.
    Low T, Avouris P (2014) ACS Nano 8(2):1086.  https://doi.org/10.1021/nn406627u
  8. 8.
    Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, Heinz TF, Guinea F, Martin-Moreno L, Koppens F (2017) Nat Mater 16:182. https://www.nature.com/articles/nmat4792,  https://doi.org/10.1038/nmat4792
  9. 9.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Nat Mater 14:421. https://www.nature.com/articles/nmat4169,  https://doi.org/10.1038/nmat4169
  10. 10.
    Ni GX, McLeod AS, Sun Z, Wang L, Xiong L, Post KW, Sunku SS, Jiang BY, Hone J, Dean CR, Fogler MM, Basov DN (2018) Nature 557:530.  https://doi.org/10.1038/s41586-018-0136-9
  11. 11.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109.  https://doi.org/10.1103/RevModPhys.81.109
  12. 12.
    Santoyo BM, del Castillo-Mussot M (1993) Rev Mex Fis 39:640Google Scholar
  13. 13.
    Linghua K, Baorong Y, Xiwei H (2007) Plasma Sci Technol 9(5):519.  https://doi.org/10.1088/1009-0630/9/5/01
  14. 14.
    Ando T, Fowler AB, Stern F (1982) Rev Mod Phys 54:437.  https://doi.org/10.1103/RevModPhys.54.437
  15. 15.
    Grimes CC, Adams G (1976) Phys Rev Lett 36:145.  https://doi.org/10.1103/PhysRevLett.36.145
  16. 16.
    Koppens FHL, Chang DE, García de Abajo FJ (2011) Nano Lett 11(8):3370.  https://doi.org/10.1021/nl201771h
  17. 17.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Nat Nanotechnol 6:630.  https://doi.org/10.1038/nnano.2011.146
  18. 18.
    Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Nature 487:82.  https://doi.org/10.1038/nature11253
  19. 19.
    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Nature 487:77.  https://doi.org/10.1038/nature11254
  20. 20.
    Liu H, Liu Y, Zhu D (2011) J Mater Chem 21:3335.  https://doi.org/10.1039/C0JM02922J
  21. 21.
    Basov DN, Fogler MM, García de Abajo FJ (2016) Science 354:6309. https://science.sciencemag.org/content/354/6309/aag1992,  https://doi.org/10.1126/science.aag1992
  22. 22.
    Haastrup S, Strange M, Pandey M, Deilmann T, Schmidt PS, Hinsche NF, Gjerding MN, Torelli D, Larsen PM, Riis-Jensen AC, Gath J, Jacobsen KW, Mortensen JJ, Olsen T, Thygesen KS (2018) 2D Mater 5(4):042002. http://c2db.fysik.dtu.dk,  https://doi.org/10.1088/2053-1583/aacfc1
  23. 23.
    Mounet N, Gibertini M, Schwaller P, Campi D, Merkys A, Marrazzo A, Sohier T, Castelli IE, Cepellotti A, Pizzi G, Marzari N (2018) Nat Nanotechnol 13:246.  https://doi.org/10.24435/materialscloud:2017.0008/v3;  https://doi.org/10.1038/s41565-017-0035-5
  24. 24.
    Novotny L, Hecht B (2012) Principles of nano-optics, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Maradudin AA, Barnes WL, Sambles JR (eds) (2014) Modern plasmonics, 1st edn. ElsevierGoogle Scholar
  26. 26.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  27. 27.
    Mikhailov SA, Ziegler K (2007) Phys Rev Lett 99:016803.  https://doi.org/10.1103/PhysRevLett.99.016803
  28. 28.
    Alcaraz Iranzo D, Nanot S, Dias EJC, Epstein I, Peng C, Efetov DK, Lundeberg MB, Parret R, Osmond J, Hong JY, Kong J, Englund DR, Peres NMR, Koppens FHL (2018) Science 360(6386):291. https://science.sciencemag.org/content/360/6386/291,  https://doi.org/10.1126/science.aar8438
  29. 29.
    Gonçalves PAD, Dias EJC, Xiao S, Vasilevskiy MI, Mortensen NA, Peres NMR (2016) ACS Photonics 3(11):2176.  https://doi.org/10.1021/acsphotonics.6b00674
  30. 30.
    Gonçalves PAD, Bozhevolnyi SI, Mortensen NA, Peres NMR (2017) Optica 4(6):595. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-6-595,  https://doi.org/10.1364/OPTICA.4.000595
  31. 31.
    Gonçalves PAD, Xiao S, Peres NMR, Mortensen NA (2017) ACS Photonics 4(12):3045.  https://doi.org/10.1021/acsphotonics.7b00558
  32. 32.
    Yu R, Cox JD, Saavedra JRM, García de Abajo FJ (2017) ACS Photonics 4(12):3106.  https://doi.org/10.1021/acsphotonics.7b00740
  33. 33.
    Lundeberg MB, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Science 357(6347):187. http://science.sciencemag.org/content/357/6347/187,  https://doi.org/10.1126/science.aan2735
  34. 34.
    Stern F (1967) Phys Rev Lett 18:546.  https://doi.org/10.1103/PhysRevLett.18.546
  35. 35.
    Hwang EH, Das Sarma S (2009) Phys Rev B 80:205405.  https://doi.org/10.1103/PhysRevB.80.205405
  36. 36.
    Stauber T, Gómez-Santos G (2012) Phys Rev B 85:075410.  https://doi.org/10.1103/PhysRevB.85.075410
  37. 37.
    Zhu JJ, Badalyan SM, Peeters FM (2013) Phys Rev B 87:085401.  https://doi.org/10.1103/PhysRevB.87.085401
  38. 38.
    Gonçalves PAD, Dias EJC, Bludov YV, Peres NMR (2016) Phys Rev B 94:195421.  https://doi.org/10.1103/PhysRevB.94.195421
  39. 39.
    Christensen J, Manjavacas A, Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) ACS Nano 6(1):431.  https://doi.org/10.1021/nn2037626
  40. 40.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Nat Photonics 7(5):394.  https://doi.org/10.1038/nphoton.2013.57
  41. 41.
    Luxmoore IJ, Gan CH, Liu PQ, Valmorra F, Li P, Faist J, Nash GR (2014) ACS Photonics 1(11):1151.  https://doi.org/10.1021/ph500233s
  42. 42.
    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V, Altug H (2015) Science 349(6244):165. https://science.sciencemag.org/content/349/6244/165,  https://doi.org/10.1126/science.aab2051
  43. 43.
    Sorger C, Preu S, Schmidt J, Winnerl S, Bludov YV, Peres NMR, Vasilevskiy MI, Weber HB (2015) New J Phys 17(5):053045.  https://doi.org/10.1088/1367-2630/17/5/053045/meta
  44. 44.
    Farmer DB, Avouris P, Li Y, Heinz TF, Han SJ (2016) ACS Photonics 3(4):553.  https://doi.org/10.1021/acsphotonics.6b00143
  45. 45.
    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Nat Nanotechnol 7:330.  https://doi.org/10.1038/nnano.2012.59
  46. 46.
    Yan H, Xia F, Li Z, Avouris P (2012) New J Phys 14(12):125001.  https://doi.org/10.1088/1367-2630/14/12/125001/meta
  47. 47.
    Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Phys Rev Lett 108:047401.  https://doi.org/10.1103/PhysRevLett.108.047401
  48. 48.
    Fang Z, Thongrattanasiri S, Schlather A, Liu Z, Ma L, Wang Y, Ajayan PM, Nordlander P, Halas NJ, García de Abajo FJ (2013) ACS Nano 7(3):2388.  https://doi.org/10.1021/nn3055835
  49. 49.
    Fang Z, Wang Y, Schlather AE, Liu Z, Ajayan PM, García de Abajo FJ, Nordlander P, Zhu X, Halas NJ (2014) Nano Lett 14(1):299.  https://doi.org/10.1021/nl404042h
  50. 50.
    Zhu X, Wang W, Yan W, Larsen MB, Bøggild P, Pedersen TG, Xiao S, Zi J, Mortensen NA (2014) Nano Lett 14(5):2907.  https://doi.org/10.1021/nl500948p
  51. 51.
    Cox JD, García de Abajo FJ (2014) Nat. Commun. 5:5725.  https://doi.org/10.1038/ncomms6725
  52. 52.
    Wang W, Christensen T, Jauho AP, Thygesen KS, Wubs M, Mortensen NA (2015) Sci Rep 5:9535.  https://doi.org/10.1038/srep09535
  53. 53.
    Schultz MH, Jauho AP, Pedersen TG (2011) Phys Rev B 84:045428.  https://doi.org/10.1103/PhysRevB.84.045428
  54. 54.
    Yeung KYM, Chee J, Yoon H, Song Y, Kong J, Ham D (2014) Nano Lett 14(5):2479.  https://doi.org/10.1021/nl500158y
  55. 55.
  56. 56.
    Wang W, Apell P, Kinaret J (2011) Phys Rev B 84:085423.  https://doi.org/10.1103/PhysRevB.84.085423
  57. 57.
    Silveiro I, García de Abajo FJ (2014) Appl Phys Lett 104(13):131103.  https://doi.org/10.1063/1.4870046
  58. 58.
    Fetter AL (1986) Phys Rev B 33:3717.  https://doi.org/10.1103/PhysRevB.33.3717
  59. 59.
    Fetter AL (1986) Phys Rev B 33:5221.  https://doi.org/10.1103/PhysRevB.33.5221
  60. 60.
    Xia X, Quinn JJ (1994) Phys. Rev. B 50:8032.  https://doi.org/10.1103/PhysRevB.50.8032
  61. 61.
    Wang W, Apell SP, Kinaret JM (2012) Phys Rev B 86:125450.  https://doi.org/10.1103/PhysRevB.86.125450
  62. 62.
    Wang W (2012) J Phys: Condens Matter 24(40):402202.  https://doi.org/10.1088/0953-8984/24/40/402202
  63. 63.
    Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York. http://people.math.sfu.ca/cbm/aands/
  64. 64.
    Nikitin AY, Low T, Martin-Moreno L (2014) Phys Rev B 90:041407.  https://doi.org/10.1103/PhysRevB.90.041407
  65. 65.
    Velizhanin KA (2015) Phys Rev B 91:125429.  https://doi.org/10.1103/PhysRevB.91.125429
  66. 66.
    Christensen T (2015) From classical to quantum plasmonics in three and two dimensions. PhD thesis, Technical University of DenmarkGoogle Scholar
  67. 67.
    Volkov VA, Mikhailov SA (1988) Sov Phys JETP 67(8):1639Google Scholar
  68. 68.
    Prodan E, Radloff C, Halas NJ, Nordlander P (2003) Science 302(5644):419. https://science.sciencemag.org/content/302/5644/419,  https://doi.org/10.1126/science.1089171
  69. 69.
    Steele JM, Grady NK, Nordlander P, Halas NJ (2007) Surface Plasmon Nanophotonics. Springer, Berlin, pp 183–196.  https://doi.org/10.1007/978-1-4020-4333-8_13
  70. 70.
    Lumerical Solutions Inc., MODE Solutions. http://www.lumerical.com/tcad-products/mode/
  71. 71.
    Bozhevolnyi S (2008) Plasmonic nanoguides and circuits, 1st edn. Pan StanfordGoogle Scholar
  72. 72.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667.  https://doi.org/10.1103/PhysRevLett.78.1667
  73. 73.
    Russell KJ, Liu TL, Cui S, Hu EL (2012) Nat Photonics 6:459. https://www.nature.com/articles/nphoton.2012.112,  https://doi.org/10.1038/nphoton.2012.112
  74. 74.
    Akselrod GM, Argyropoulos C, Hoang TB, Ciracì C, Fang C, Huang J, Smith DR, Mikkelsen MH (2014) Nat Photonics 8:835. https://www.nature.com/articles/nphoton.2014.228,  https://doi.org/10.1038/nphoton.2014.228
  75. 75.
  76. 76.
    Gonçalves PAD, Christensen T, Rivera N, Jauho AP, Mortensen NA, Soljačić M (2020) Plasmon-emitter interactions at the nanoscale. Nat Commun 11:366.  https://doi.org/10.1038/s41467-019-13820-z
  77. 77.
    Bozhevolnyi SI, Mortensen NA (2017) Nanophotonics 6:1185.  https://doi.org/10.1515/nanoph-2016-0179
  78. 78.
    Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Phys Rev Lett 97:053002.  https://doi.org/10.1103/PhysRevLett.97.053002
  79. 79.
    Calafell IA, Cox JD, Radonjić M, Saavedra JRM, García de Abajo FJ, Rozema LA, Walther P (2019) npj Quantum Inf 5:37.  https://doi.org/10.1038/s41534-019-0150-2
  80. 80.
    Khaliji K, Fallahi A, Martin-Moreno L, Low T (2017) Phys Rev B 95:201401.  https://doi.org/10.1103/PhysRevB.95.201401
  81. 81.
    Yang H, Jussila H, Autere A, Komsa HP, Ye G, Chen X, Hasan T, Sun Z (2017) ACS Photonics 4(12):3023.  https://doi.org/10.1021/acsphotonics.7b00507
  82. 82.
    Silva-Guillén JA, Canadell E, Ordejón P, Guinea F, Roldán R (2017) 2D Mater 4(2):025085.  https://doi.org/10.1088/2053-1583/aa6b92/meta
  83. 83.
    Nemilentsau A, Low T, Hanson G (2016) Phys Rev Lett 116:066804.  https://doi.org/10.1103/PhysRevLett.116.066804
  84. 84.
    Gjerding MN, Petersen R, Pedersen TG, Mortensen NA, Thygesen KS (2017) Nat Commun 8:320.  https://doi.org/10.1038/s41467-017-00412-y
  85. 85.
    Low T, Roldán R, Wang H, Xia F, Avouris P, Moreno LM, Guinea F (2014) Phys Rev Lett 113:106802.  https://doi.org/10.1103/PhysRevLett.113.106802
  86. 86.
    Carvalho A, Wang M, Zhu X, Rodin AS, Su H, Neto AHC (2016) Nat Rev Mater 1:16061.  https://doi.org/10.1038/natrevmats.2016.61
  87. 87.
    Dai J, Zeng XC (2015) Ang Chem 127(26):7682.  https://doi.org/10.1002/ange.201502107
  88. 88.
    Rahman M, Davey K, Qiao SZ (2017) Adv Func Mater 27(10):1606129.  https://doi.org/10.1002/adfm.201606129
  89. 89.
    COMSOL Multiphysics. www.comsol.com
  90. 90.
    Cupo A, Masih Das P, Chien CC, Danda G, Kharche N, Tristant D, Drndić M, Meunier V (2017) ACS Nano 11(7):7494.  https://doi.org/10.1021/acsnano.7b04031

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Nano OpticsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations