Advertisement

Classical Electrodynamics of Solids

  • Paulo André Dias GonçalvesEmail author
Chapter
  • 26 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Reviews the foundations of classical electrodynamics, including Maxwell’s equations, boundary conditions, and the macroscopic constitutive relations. Next, we introduce the core elements of plasmonics in numerous settings and establish the fundamental properties of surface plasmon polaritons and localized surface plasmons. Finally, we provide an overview of the electromagnetic Green’s dyadics and use it to introduce the concept of local density of states and describe the Purcell effect.

References

  1. 1.
    Jackson JD (1998) Classical electrodynamics, 3rd edn. Wiley, New YorkzbMATHGoogle Scholar
  2. 2.
    Born M, Wolf E (1999) Principles of optics, 7th edn. Cambridge University PressGoogle Scholar
  3. 3.
    Stratton JA (1941) Electromagnetic theory. McGraw-Hill, New YorkzbMATHGoogle Scholar
  4. 4.
    Landau LD, Lifshitz EM (1960) Electrodynamics of continuous media. Pergamon Press, New YorkzbMATHGoogle Scholar
  5. 5.
    Novotny L, Hecht B (2012) Principles of nano-optics, 2nd edn. Cambridge University PressGoogle Scholar
  6. 6.
    Maradudin AA, Barnes WL, Sambles JR (eds) (2014) Modern plasmonics, 1st edn. ElsevierGoogle Scholar
  7. 7.
    Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn. World Scientific, Singapore.  https://doi.org/10.1142/9948
  8. 8.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Harcourt College Publishers, New YorkzbMATHGoogle Scholar
  9. 9.
    Grosso G, Parravicini GP (2013) Solid state physics, 2nd edn. Academic PressGoogle Scholar
  10. 10.
    Ginzburg P, Zayats AV (2013) ACS Nano 7(5):4334.  https://doi.org/10.1021/nn400842m
  11. 11.
    Mortensen NA (2013) Photonics nanostructures. Fundam Appl 11(4):303.  https://doi.org/10.1016/j.photonics.2013.06.002
  12. 12.
    Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA (2015) J Phys Condens Matter 27(18):183–204.  https://doi.org/10.1088/0953-8984/27/18/183204
  13. 13.
    Gramotnev DK, Bozhevolnyi SI (2010) Nat Photonics 4(2):83.  https://doi.org/10.1038/nphoton.2010.282
  14. 14.
    Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824.  https://doi.org/10.1038/nature01937
  15. 15.
    Stockman MI (2011) Opt Express 19(22):22029.  https://doi.org/10.1364/OE.19.022029
  16. 16.
    Akselrod GM, Argyropoulos C, Hoang TB, Ciracì C, Fang C, Huang J, Smith DR, Mikkelsen MH (2014) Nat Photonics 8:835.  https://doi.org/10.1038/nphoton.2014.228
  17. 17.
    Russell KJ, Liu TL, Cui S, Hu EL (2012) Nat Photonics 6:459.  https://doi.org/10.1038/nphoton.2012.112
  18. 18.
    Raether H (1988) Surface plasmons on smooth and rough surfaces and on gratings. SpringerGoogle Scholar
  19. 19.
    Fox M (2010) Optical properties of solids. Oxford master series in physics, 2nd edn. Oxford University PressGoogle Scholar
  20. 20.
    Pelton M, Bryant GW (2013) Introduction to metal-nanoparticle plasmonics. Wiley, New YorkGoogle Scholar
  21. 21.
    Gonçalves MR (2014) J Phys D Appl Phys 47(21):213001.  https://doi.org/10.1088/0022-3727/47/21/213001
  22. 22.
    Raza S, Stenger N, Pors A, Holmgaard T, Kadkhodazadeh S, Wagner JB, Pedersen K, Wubs M, Bozhevolnyi SI, Mortensen NA (2014) Nat Commun 5:4125.  https://doi.org/10.1038/ncomms5125
  23. 23.
    Drude P (1900) Ann Phys 306(3):566.  https://doi.org/10.1002/andp.19003060312
  24. 24.
    Etchegoin PG, Le Ru EC, Meyer M (2006) J Chem Phys 125(16):164705 [Erratum: see  https://doi.org/10.1063/1.2802403]
  25. 25.
    Sehmi HS, Langbein W, Muljarov EA (2017) Phys Rev B 95:115444.  https://doi.org/10.1103/PhysRevB.95.115444
  26. 26.
    Brendel R, Bormann D (1992) J Appl Phys 71(1):1.  https://doi.org/10.1063/1.350737
  27. 27.
    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Appl Opt 37(22):5271.  https://doi.org/10.1364/AO.37.005271
  28. 28.
    Sommerfeld A (1928) Z Phys 47(1):1.  https://doi.org/10.1007/BF01391052
  29. 29.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370.  https://doi.org/10.1103/PhysRevB.6.4370
  30. 30.
    Giuliani G, Vignale G (2005) Quantum theory of the electron liquid. Cambridge University Press.  https://doi.org/10.1017/CBO9780511619915
  31. 31.
    Bruus H, Flensberg K (2004) Many-body quantum theory in condensed matter physics: an introduction. Oxford graduate texts. Oxford University PressGoogle Scholar
  32. 32.
    Mahan GD (2000) Many-particle physics, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  33. 33.
    Fiolhais C, Marques MA, Ullrich CA, Nogueira F (eds) (2003) A primer in density functional theory. Lecture notes in physics. Springer, New YorkGoogle Scholar
  34. 34.
    Burke K, Werschnik J, Gross EKU (2005) J Chem Phys 123(6):062206.  https://doi.org/10.1063/1.1904586
  35. 35.
    Kohanoff J (2006) Electronic structure calculations for solids and molecules: theory and computational methods. Cambridge University Press.  https://doi.org/10.1017/CBO9780511755613
  36. 36.
    Maier SA (2007) Plasmonics: fundamentals and applications. SpringerGoogle Scholar
  37. 37.
    Rakić AD (1995) Appl Opt 34(22):4755.  https://doi.org/10.1364/AO.34.004755
  38. 38.
    Ginn JC, Jarecki RL, Shaner EA, Davids PS (2011) J Appl Phys 110(4):043110.  https://doi.org/10.1063/1.3626050
  39. 39.
    N’Tsame Guilengui V, Cerutti L, Rodriguez JB, Tournié E, Taliercio T (2012) Appl Phys Lett 101(16):161113.  https://doi.org/10.1063/1.4760281
  40. 40.
    Ozbay E (2006) Science 311(5758):189.  https://doi.org/10.1126/science.1114849
  41. 41.
    Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, Heinz TF, Guinea F, Martin-Moreno L, Koppens F (2017) Nat Mater 16:182.  https://doi.org/10.1038/nmat4792
  42. 42.
    García de Abajo FJ (2014) ACS Photonics 1(3):135.  https://doi.org/10.1021/ph400147y
  43. 43.
    Lundeberg MB, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Science 357(6347):187.  https://doi.org/10.1126/science.aan2735
  44. 44.
    Archambault A, Teperik TV, Marquier F, Greffet JJ (2009) Phys Rev B 79:195414.  https://doi.org/10.1103/PhysRevB.79.195414
  45. 45.
    Wolff C, Busch K, Mortensen NA (2018) Phys Rev B 97:104203.  https://doi.org/10.1103/PhysRevB.97.104203
  46. 46.
    Archambault A, Besbes M, Greffet JJ (2012) Phys Rev Lett 109:097405.  https://doi.org/10.1103/PhysRevLett.109.097405
  47. 47.
    Smith CLC, Stenger N, Kristensen A, Mortensen NA, Bozhevolnyi SI (2015) Nanoscale 7:9355.  https://doi.org/10.1039/C5NR01282A
  48. 48.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Phys Rev Lett 95:046802.  https://doi.org/10.1103/PhysRevLett.95.046802
  49. 49.
    Kliewer KL, Fuchs R (1967) Phys Rev 153:498.  https://doi.org/10.1103/PhysRev.153.498
  50. 50.
    Economou EN (1969) Phys Rev 182:539.  https://doi.org/10.1103/PhysRev.182.539
  51. 51.
    Apell SP, Echenique PM, Ritchie RH (1996) Ultramicroscopy 65(1):53.  https://doi.org/10.1016/S0304-3991(96)00055-1
  52. 52.
    Ögüt B, Vogelgesang R, Sigle W, Talebi N, Koch CT, van Aken PA (2011) ACS Nano 5(8):6701.  https://doi.org/10.1021/nn2022414
  53. 53.
    Rossouw D, Botton GA (2012) Opt Express 20(7):6968.  https://doi.org/10.1364/OE.20.006968
  54. 54.
    Dionne JA, Sweatlock LA, Atwater HA, Polman A (2005) Phys Rev B 72:075405.  https://doi.org/10.1103/PhysRevB.72.075405
  55. 55.
    Bozhevolnyi S (2008) Plasmonic nanoguides and circuits, 1st edn. Pan StanfordGoogle Scholar
  56. 56.
    Fang Y, Sun M (2015) Light Sci Appl 4(6):e294.  https://doi.org/10.1038/lsa.2015.67
  57. 57.
    Lorenz L, Dan K (1890) Vidensk Selsk Skrift 6(6). http://www.imm.dtu.dk/~jerf/Lorenz_Danish.pdf
  58. 58.
    Mie G (1908) Ann Phys 330(3):377.  https://doi.org/10.1002/andp.19083300302
  59. 59.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  60. 60.
    van de Hulst HC (1981) Light scattering by small particles. DoverGoogle Scholar
  61. 61.
    Hergert W, Wriedt T (eds) (2012) The Mie theory: basics and applications. Springer series in optical sciences. Springer, New YorkzbMATHGoogle Scholar
  62. 62.
    Christensen T, Yan W, Raza S, Jauho AP, Mortensen NA, Wubs M (2014) ACS Nano 8(2):1745.  https://doi.org/10.1021/nn406153k
  63. 63.
    Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García de Abajo FJ (2008) Chem Soc Rev 37:1792.  https://doi.org/10.1039/B711486A
  64. 64.
    Amorim B, Gonçalves PAD, Vasilevskiy MI, Peres NMR (2017) Appl Sci 7(11). http://www.mdpi.com/2076-3417/7/11/1158
  65. 65.
    Pohl M, Belotelov VI, Akimov IA, Kasture S, Vengurlekar AS, Gopal AV, Zvezdin AK, Yakovlev DR, Bayer M (2012) Phys Rev B 85:081401.  https://doi.org/10.1103/PhysRevB.85.081401
  66. 66.
    Boltasseva A, Atwater HA (2011) Science 331(6015):290.  https://doi.org/10.1126/science.1198258
  67. 67.
    Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. WileyGoogle Scholar
  68. 68.
    Shvets G, Tsukerman I (eds) (2011) Plasmonics and plasmonic metamaterials. World ScientificGoogle Scholar
  69. 69.
    Takayama O, Shkondin E, Bodganov A, Aryaee Panah ME, Golenitskii K, Dmitriev P, Repän T, Malureanu R, Belov P, Jensen F, Lavrinenko AV (2017) ACS Photonics 4(11):2899.  https://doi.org/10.1021/acsphotonics.7b00924
  70. 70.
    Poddubny A, Iorsh I, Belov P, Kivshar Y (2013) Nat Photonics 7(12):948.  https://doi.org/10.1038/nphoton.2013.243
  71. 71.
    Gomez-Diaz JS, Tymchenko M, Alù A (2015) Phys Rev Lett 114:233901.  https://doi.org/10.1103/PhysRevLett.114.233901
  72. 72.
    Sreekanth KV, Alapan Y, ElKabbash M, Ilker E, Hinczewski M, Gurkan UA, De Luca A, Strangi G (2016) Nat Mater 15(6):621.  https://doi.org/10.1038/nmat4609
  73. 73.
    Peragut F, Cerutti L, Baranov A, Hugonin JP, Taliercio T, Wilde YD, Greffet JJ (2017) Optica 4(11):1409.  https://doi.org/10.1364/OPTICA.4.001409
  74. 74.
    Lu L, Simpson RE, Valiyaveedu SK (2018) J Opt 20(10):103001.  https://doi.org/10.1088/2040-8986/aade68
  75. 75.
    Sasin ME, Seisyan RP, Kalitteevski MA, Brand S, Abram RA, Chamberlain JM, Egorov AY, Vasil’ev AP, Mikhrin VS, Kavokin AV (2008) Appl Phy Lett 92(25):251112.  https://doi.org/10.1063/1.2952486
  76. 76.
    Grossmann C, Coulson C, Christmann G, Farrer I, Beere HE, Ritchie DA, Baumberg JJ (2011) Appl Phys Lett 98(23):231105.  https://doi.org/10.1063/1.3597304
  77. 77.
    Symonds C, Lheureux G, Hugonin JP, Greffet JJ, Laverdant J, Brucoli G, Lemaitre A, Senellart P, Bellessa J (2013) Nano Lett 13(7):3179.  https://doi.org/10.1021/nl401210b
  78. 78.
    Barnes WL, Preist TW, Kitson SC, Sambles JR (1996) Phys Rev B 54:6227.  https://doi.org/10.1103/PhysRevB.54.6227
  79. 79.
    Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Opt Express 14(2):847.  https://doi.org/10.1364/OPEX.14.000847
  80. 80.
    Lucas BD, Kim JS, Chin C, Guo LJ (2008) Adv Mater 20(6):1129.  https://doi.org/10.1002/adma.200700225
  81. 81.
    Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H (2009) Proc Natl Acad Sci USA 106(46):19227.  https://doi.org/10.1073/pnas.0907459106
  82. 82.
    Pendry JB, Martín-Moreno L, García-Vidal FJ (2004) Science 305(5685):847.  https://doi.org/10.1126/science.1098999
  83. 83.
    Rusina A, Durach M, Stockman MI (2010) Appl Phys A Mater Sci Process 100(2):375.  https://doi.org/10.1007/s00339-010-5866-y
  84. 84.
    Jung J, Søndergaard T, Bozhevolnyi SI (2009) Phys Rev B 79:035401.  https://doi.org/10.1103/PhysRevB.79.035401
  85. 85.
    Neutens P, Van Dorpe P, De Vlaminck I, Lagae L, Borghs G (2009) Nat Photonics 3(5):283.  https://doi.org/10.1038/nphoton.2009.47
  86. 86.
    Im H, Bantz KC, Lindquist NC, Haynes CL, Oh SH (2010) Nano Lett 10(6):2231.  https://doi.org/10.1021/nl1012085
  87. 87.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Opt Express 20(12):13311.  https://doi.org/10.1364/OE.20.013311
  88. 88.
    Novikov IV, Maradudin AA (2002) Phys Rev B 66:035403.  https://doi.org/10.1103/PhysRevB.66.035403
  89. 89.
    Geisler M, Cui X, Wang J, Rindzevicius T, Gammelgaard L, Jessen BS, Goncalves PAD, Todisco F, Bøggild P, Boisen A, Wubs M, Mortensen NA, Xiao S, Stenger N (2019) ACS Photonics 6(4):994.  https://doi.org/10.1021/acsphotonics.8b01766
  90. 90.
    Langhammer C, Kasemo B, Zorić I (2007) J Chem Phys 126(19):194702.  https://doi.org/10.1063/1.2734550
  91. 91.
    Langhammer C, Schwind M, Kasemo B, Zorić I (2008) Nano Lett 8(5):1461.  https://doi.org/10.1021/nl080453i
  92. 92.
    Schmidt FP, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Nano Lett 12(11):5780.  https://doi.org/10.1021/nl3030938
  93. 93.
    Nelayah J, Kociak M, Stéphan O, de Abajo FJG, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C (2007) Nat Phys 3(5):348.  https://doi.org/10.1038/nphys575
  94. 94.
    Schmidt FP, Ditlbacher H, Hofer F, Krenn JR, Hohenester U (2014) Nano Lett 14(8):4810.  https://doi.org/10.1021/nl502027r
  95. 95.
    Campos A, Arbouet A, Martin J, Gérard D, Proust J, Plain J, Kociak M (2017) ACS Photonics 4(5):1257.  https://doi.org/10.1021/acsphotonics.7b00204
  96. 96.
    Gao B, Arya G, Tao AR (2012) Nat Nanotechnol 7(7):433.  https://doi.org/10.1038/nnano.2012.83
  97. 97.
    Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Nano Lett 11(4):1657.  https://doi.org/10.1021/nl200135r
  98. 98.
    Qin F, Zhao T, Jiang R, Jiang N, Ruan Q, Wang J, Sun LD, Yan CH, Lin HQ (2016) Adv Opt Mater 4(1):76.  https://doi.org/10.1002/adom.201500496
  99. 99.
    Mahmoud MA, El-Sayed MA (2013) J Phys Chem Lett 4(9):1541.  https://doi.org/10.1021/jz4005015
  100. 100.
    Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM (2008) Chem Soc Rev 37:1783.  https://doi.org/10.1039/B711490G
  101. 101.
    Tao AR, Habas S, Yang P (2008) Small 4(3):310.  https://doi.org/10.1002/smll.200701295
  102. 102.
    Rycenga M, Cobley CM, Zeng J, Li W, Moran CH, Zhang Q, Qin D, Xia Y (2011) Chem Rev 111(6):3669.  https://doi.org/10.1021/cr100275d
  103. 103.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Nano Lett 4(5):899.  https://doi.org/10.1021/nl049681c
  104. 104.
    Hao E, Schatz GC (2004) J Chem Phys 120(1):357.  https://doi.org/10.1063/1.1629280
  105. 105.
    Romero I, Aizpurua J, Bryant GW, García de Abajo FJ (2006) Opt Express 14(21):9988.  https://doi.org/10.1364/OE.14.009988
  106. 106.
    Prodan E, Nordlander P (2004) J Chem Phys 120(11):5444.  https://doi.org/10.1063/1.1647518
  107. 107.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23(6):741.  https://doi.org/10.1038/nbt1100
  108. 108.
    Zuloaga J, Prodan E, Nordlander P (2009) Nano Lett 9(2):887.  https://doi.org/10.1021/nl803811g
  109. 109.
    Fischer H, Martin OJF (2008) Opt Express 16(12):9144.  https://doi.org/10.1364/OE.16.009144
  110. 110.
    Kinkhabwala A, Yu Z, Fan S, Avlasevich Y, Müllen K, Moerner W (2009) Nat Photonics 3(11):654.  https://doi.org/10.1038/nphoton.2009.187
  111. 111.
    Tabor C, Murali R, Mahmoud M, El-Sayed MA (2009) J Phys Chem A 113(10):1946.  https://doi.org/10.1021/jp807904s
  112. 112.
    Roxworthy BJ, Ko KD, Kumar A, Fung KH, Chow EKC, Liu GL, Fang NX, Toussaint KC (2012) Nano Lett 12(2):796.  https://doi.org/10.1021/nl203811q
  113. 113.
    Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos AP, Liu N (2010) Nano Lett 10(7):2721.  https://doi.org/10.1021/nl101938p
  114. 114.
    Hentschel M, Dregely D, Vogelgesang R, Giessen H, Liu N (2011) ACS Nano 5(3):2042.  https://doi.org/10.1021/nn103172t
  115. 115.
    Gallinet B, Martin OJF (2011) ACS Nano 5(11):8999.  https://doi.org/10.1021/nn203173r
  116. 116.
    Hentschel M, Schäferling M, Weiss T, Liu N, Giessen H (2012) Nano Lett 12(5):2542.  https://doi.org/10.1021/nl300769x
  117. 117.
    Wang H, Brandl DW, Le F, Nordlander P, Halas NJ (2006) Nano Lett 6(4):827.  https://doi.org/10.1021/nl060209w
  118. 118.
    Radloff C, Halas NJ (2004) Nano Lett 4(7):1323.  https://doi.org/10.1021/nl049597x
  119. 119.
    Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Nano Lett 10(7):2694.  https://doi.org/10.1021/nl1016392
  120. 120.
    Oldenburg S, Averitt R, Westcott S, Halas N (1998) Chem Phys Lett 288(2):243.  https://doi.org/10.1016/S0009-2614(98)00277-2
  121. 121.
    Wu Y, Nordlander P (2006) J Chem Phys 125(12):124708.  https://doi.org/10.1063/1.2352750
  122. 122.
    Tam F, Chen AL, Kundu J, Wang H, Halas NJ (2007) J Chem Phys 127(20):204703.  https://doi.org/10.1063/1.2796169
  123. 123.
    Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Nano Lett 7(7):1929.  https://doi.org/10.1021/nl070610y
  124. 124.
    Knight MW, Halas NJ (2008) New J Phys 10(10):105006.  https://doi.org/10.1088/1367-2630/10/10/105006
  125. 125.
    Kravets VG, Schedin F, Grigorenko AN (2008) Phys Rev Lett 101:087403.  https://doi.org/10.1103/PhysRevLett.101.087403
  126. 126.
    Vecchi G, Giannini V, Gómez Rivas (2009) J Phys Rev Lett 102:146807.  https://doi.org/10.1103/PhysRevLett.102.146807
  127. 127.
    Auguié B, Barnes WL (2008) Phys Rev Lett 101:143902.  https://doi.org/10.1103/PhysRevLett.101.143902
  128. 128.
    García de Abajo FJ (2007) Rev Mod Phys 79:1267.  https://doi.org/10.1103/RevModPhys.79.1267
  129. 129.
    Kravets VG, Kabashin AV, Barnes WL, Grigorenko AN (2018) Chem Rev 118(12):5912.  https://doi.org/10.1021/acs.chemrev.8b00243
  130. 130.
    Yu R, Liz-Marzán LM, García de Abajo FJ (2017) Chem Soc Rev 46:6710.  https://doi.org/10.1039/C6CS00919K
  131. 131.
    Gallinet B, Butet J, Martin OJF (2015) Laser Photonics Rev 9(6):577.  https://doi.org/10.1002/lpor.201500122
  132. 132.
    Lavrinenko AV, Lagsgaard J, Gregersen N, Schmidt F, Søndergaard T (2014) Numerical methods in photonics, 1st edn. CRC PressGoogle Scholar
  133. 133.
    Inan US, Marshall RA (2011) Numerical electromagnetics: the FDTD method. Cambridge University Press, New YorkCrossRefGoogle Scholar
  134. 134.
    Jin JM (2014) The finite element method in electromagnetics, 3rd edn. WileyGoogle Scholar
  135. 135.
    Søndergaard TM (2019) Green’s function integral equation methods in nano-optics, 1st edn. CRC PressGoogle Scholar
  136. 136.
    García de Abajo FJ, Howie A (2002) Phys Rev B 65:115418.  https://doi.org/10.1103/PhysRevB.65.115418
  137. 137.
    Myroshnychenko V, Carbó-Argibay E, Pastoriza-Santos I, Pérez-Juste J, Liz-Marzán LM, García de Abajo FJ (2008) Adv Mater 20(22):4288.  https://doi.org/10.1002/adma.200703214
  138. 138.
    Hohenester U, Trügler A (2012) Comput Phys Commun 183(2):370.  https://doi.org/10.1016/j.cpc.2011.09.009
  139. 139.
    Waxenegger J, Trügler A, Hohenester U (2015) Comput Phys Commun 193:138.  https://doi.org/10.1016/j.cpc.2015.03.023
  140. 140.
    Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491.  https://doi.org/10.1364/JOSAA.11.001491
  141. 141.
    Wylie JM, Sipe JE (1984) Phys Rev A 30:1185.  https://doi.org/10.1103/PhysRevA.30.1185
  142. 142.
    Carminati R, Cazé A, Cao D, Peragut F, Krachmalnicoff V, Pierrat R, Wilde YD (2015) Surf Sci Rep 70(1):1.  https://doi.org/10.1016/j.surfrep.2014.11.001
  143. 143.
    Griffiths DJ (2005) Introduction to quantum mechanics, 2nd edn. Prentice-Hall, New JerseyGoogle Scholar
  144. 144.
    Ford GW, Weber WH (1984) Phys Rep 113(4):195.  https://doi.org/10.1016/0370-1573(84)90098-X
  145. 145.
    Joulain K, Carminati R, Mulet JP, Greffet JJ (2003) Phys Rev B 68:245405.  https://doi.org/10.1103/PhysRevB.68.245405
  146. 146.
    Purcell EM (1946) Phys Rev 69:681CrossRefGoogle Scholar
  147. 147.
    Pelton M (2015) Nat Photonics 9:427.  https://doi.org/10.1038/nphoton.2015.103
  148. 148.
    Yablonovitch E (1987) Phys Rev Lett 58:2059.  https://doi.org/10.1103/PhysRevLett.58.2059
  149. 149.
    Bouchet D, Carminati R (2019) J Opt Soc Am A 36(2):186.  https://doi.org/10.1364/JOSAA.36.000186
  150. 150.
    Koenderink AF (2010) Opt Lett 35(24):4208.  https://doi.org/10.1364/OL.35.004208
  151. 151.
    Lakowicz JR (2005) Anal Biochem 337(2):171.  https://doi.org/10.1016/j.ab.2004.11.026
  152. 152.
    Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002.  https://doi.org/10.1103/PhysRevLett.96.113002
  153. 153.
    Sorger VJ, Pholchai N, Cubukcu E, Oulton RF, Kolchin P, Borschel C, Gnauck M, Ronning C, Zhang X (2011) Nano Lett 11(11):4907.  https://doi.org/10.1021/nl202825s

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Nano OpticsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations