Advertisement

Introduction

  • Paulo André Dias GonçalvesEmail author
Chapter
  • 16 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Plasmonics—the central topic of this thesis—lies precisely at the intersection between materials science and electromagnetism, or, else, between condensed matter physics and photonics. Broadly speaking, plasmonics is a sub-branch of physics that focuses on the study of plasmons and plasmon-enabled phenomena. Plasmons are self-sustained collective excitations of the free-electron plasma mediated by the Coulomb interaction between its charge carriers. Here, we introduce and contextualize the field of plasmonics, followed by a summary of the scope of this thesis, its structure, and its contents.

References

  1. 1.
    N.R. Council (1975) Materials and man’s needs: materials science and engineering—volume i, the history, scope, and nature of materials science and engineering. The National Academies Press, Washington, DC. https://www.nap.edu/catalog/10436/materials-and-mans-needs-materials-science-and-engineering-volume-i,  https://doi.org/10.17226/10436
  2. 2.
    Darrigol O (2003) Electrodynamics from Ampère to Einstein. Oxford University PressGoogle Scholar
  3. 3.
    Maradudin AA, Barnes WL, Sambles JR (eds) (2014) Modern plasmonics, 1st edn. ElsevierGoogle Scholar
  4. 4.
    Maier SA (2007) Plasmonics: fundamentals and applications. SpringerGoogle Scholar
  5. 5.
    Pelton M, Bryant GW (2013) Introduction to metal-nanoparticle plasmonics. Wiley, New YorkGoogle Scholar
  6. 6.
    Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2006) Rep Prog Phys 70(1):1. https://iopscience.iop.org/article/10.1088/0034-4885/70/1/R01/meta,  https://doi.org/10.1088/0034-4885/70/1/r01
  7. 7.
    Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn. World Scientific, Singapore. http://www.worldscientific.com/worldscibooks/10.1142/9948,  https://doi.org/10.1142/9948
  8. 8.
    Bohm D, Pines D (1951) Phys Rev 82:625.  https://doi.org/10.1103/PhysRev.82.625
  9. 9.
    Pines D, Bohm D (1952) Phys Rev 85:338.  https://doi.org/10.1103/PhysRev.85.338
  10. 10.
    Bohm D, Pines D (1953) Phys Rev 92:609.  https://doi.org/10.1103/PhysRev.92.609
  11. 11.
    Pines D (1953) Phys Rev 92:626.  https://doi.org/10.1103/PhysRev.92.626
  12. 12.
    Pines D (1956) Rev Mod Phys 28:184.  https://doi.org/10.1103/RevModPhys.28.184
  13. 13.
    Giuliani G, Vignale G (2005) Quantum theory of the electron liquid. Cambridge University Press.  https://doi.org/10.1017/CBO9780511619915
  14. 14.
    Mahan GD (2000) Many-particle physics, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  15. 15.
    Bruus H, Flensberg K (2004) Many-body quantum theory in condensed matter physics: an introduction. Oxford graduate texts. Oxford University PressGoogle Scholar
  16. 16.
    Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824. https://www.nature.com/articles/nature01937,  https://doi.org/10.1038/nature01937
  17. 17.
    Gramotnev DK, Bozhevolnyi SI (2010) Nat Photon 4(2):83. https://www.nature.com/articles/nphoton.2009.282,  https://doi.org/10.1038/nphoton.2010.282
  18. 18.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Nat Mater 9:193.  https://doi.org/10.1038/nmat2630ADSCrossRefGoogle Scholar
  19. 19.
    Hao E, Schatz GC (2004) J Chem Phys 120(1):357.  https://doi.org/10.1063/1.1629280ADSCrossRefGoogle Scholar
  20. 20.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Nature 440:508.  https://doi.org/10.1038/nature04594ADSCrossRefGoogle Scholar
  21. 21.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Phys Rev Lett 78:1667.  https://doi.org/10.1103/PhysRevLett.78.1667ADSCrossRefGoogle Scholar
  22. 22.
    Haes AJ, Haynes CL, McFarland AD, Schatz GC, Van Duyne RP, Zou S (2005) MRS Bull 30(5):368–375.  https://doi.org/10.1557/mrs2005.100CrossRefGoogle Scholar
  23. 23.
    Perney NMB, Baumberg JJ, Zoorob ME, Charlton MDB, Mahnkopf S, Netti CM (2006) Opt Express 14(2):847. http://www.opticsexpress.org/abstract.cfm?URI=oe-14-2-847,  https://doi.org/10.1364/OPEX.14.000847
  24. 24.
    Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002.  https://doi.org/10.1103/PhysRevLett.96.113002
  25. 25.
    Russell KJ, Liu TL, Cui S, Hu EL (2012) Nat Photon 6:459. https://www.nature.com/articles/nphoton.2012.112,  https://doi.org/10.1038/nphoton.2012.112
  26. 26.
    Akselrod GM, Argyropoulos C, Hoang TB, Ciracì C, Fang C, Huang J, Smith DR, Mikkelsen MH (2014) Nat Photon 8:835. https://www.nature.com/articles/nphoton.2014.228,  https://doi.org/10.1038/nphoton.2014.228
  27. 27.
    Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) Nat Biotechnol 23(6):741. https://www.nature.com/articles/nbt1100,  https://doi.org/10.1038/nbt1100
  28. 28.
    Aćimović SS, Kreuzer MP, González MU, Quidant R (2009) ACS Nano 3(5):1231.  https://doi.org/10.1021/nn900102jCrossRefGoogle Scholar
  29. 29.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Nano Lett 10(7):2342.  https://doi.org/10.1021/nl9041033ADSCrossRefGoogle Scholar
  30. 30.
    Mayer KM, Hafner JH (2011) Chem Rev 111(6):3828.  https://doi.org/10.1021/cr100313vCrossRefGoogle Scholar
  31. 31.
  32. 32.
    Hirsch LR, Stafford RJ, Bankson JA, Sershen SR, Rivera B, Price RE, Hazle JD, Halas NJ, West JL (2003) Proc Natl Acad Sci USA 100(23):13549. https://www.pnas.org/content/100/23/13549,  https://doi.org/10.1073/pnas.2232479100
  33. 33.
    Lal S, Clare SE, Halas NJ (2008) Acc Chem Res 41(12):1842.  https://doi.org/10.1021/ar800150gCrossRefGoogle Scholar
  34. 34.
    Im H, Shao H, Park YI, Peterson VM, Castro CM, Weissleder R, Lee H (2014) Nat Biotechnol 32:490.  https://doi.org/10.1038/nbt.2886CrossRefGoogle Scholar
  35. 35.
    Engheta N, Ziolkowski RW (eds) (2006) Metamaterials: physics and engineering explorations. WileyGoogle Scholar
  36. 36.
    Shvets G, Tsukerman I (eds) (2011) Plasmonics and plasmonic metamaterials. World ScientificGoogle Scholar
  37. 37.
    Fischer H, Martin OJF (2008) Opt Express 16(12):9144.  https://doi.org/10.1364/OE.16.009144ADSCrossRefGoogle Scholar
  38. 38.
    Novotny L, van Hulst N (2011) Nat Photonics 5:83.  https://doi.org/10.1038/nphoton.2010.237ADSCrossRefGoogle Scholar
  39. 39.
  40. 40.
  41. 41.
    Boriskina SV, Cooper TA, Zeng L, Ni G, Tong JK, Tsurimaki Y, Huang Y, Meroueh L, Mahan G, Chen G (2017) Adv Opt Photon 9(4):775. http://aop.osa.org/abstract.cfm?URI=aop-9-4-775,  https://doi.org/10.1364/AOP.9.000775
  42. 42.
    Fernández-Domínguez AI, García-Vidal FJ, Martín-Moreno L (2017) Nat Photon 11(1):8. https://www.nature.com/articles/nphoton.2016.258
  43. 43.
    Kauranen M, Zayats AV (2012) Nat Photon 6:737–748.  https://doi.org/10.1038/nphoton.2012.244ADSCrossRefGoogle Scholar
  44. 44.
  45. 45.
    Kristensen A, Yang JKW, Bozhevolnyi SI, Link S, Nordlander P, Halas NJ, Mortensen NA (2016) Nat Rev Mater 2:16088.  https://doi.org/10.1038/natrevmats.2016.88ADSCrossRefGoogle Scholar
  46. 46.
    Clausen JS, Højlund-Nielsen E, Christiansen AB, Yazdi S, Grajower M, Taha H, Levy U, Kristensen A, Mortensen NA (2014) Nano Lett 14(8):4499.  https://doi.org/10.1021/nl5014986ADSCrossRefGoogle Scholar
  47. 47.
    Zhu X, Vannahme C, Højlund-Nielsen E, Mortensen NA, Kristensen A (2016) Nat Nanotechnol 11:325.  https://doi.org/10.1038/nnano.2015.285ADSCrossRefGoogle Scholar
  48. 48.
    Yu R, Mazumder P, Borrelli NF, Carrilero A, Ghosh DS, Maniyara RA, Baker D, García de Abajo FJ, Pruneri V (2016) ACS Photon 3(7):1194.  https://doi.org/10.1021/acsphotonics.6b00090CrossRefGoogle Scholar
  49. 49.
    Vasa P, Wang W, Pomraenke R, Lammers M, Maiuri M, Manzoni C, Cerullo G, Lienau C (2013) Nat Photon 7(2):128. https://www.nature.com/articles/nphoton.2012.340,  https://doi.org/10.1038/nphoton.2012.340
  50. 50.
  51. 51.
    Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Nature 535(7610):127. https://www.nature.com/articles/nature17974,  https://doi.org/10.1038/nature17974
  52. 52.
    Flick J, Rivera N, Narang P (2018) Nanophotonics 7(9):1479.  https://doi.org/10.1515/nanoph-2018-0067CrossRefGoogle Scholar
  53. 53.
    Andersen ML, Stobbe S, Sørensen AS, Lodahl P (2011) Nat Phys 7(3):215. https://www.nature.com/articles/nphys1870,  https://doi.org/10.1038/nphys1870
  54. 54.
    Rivera N, Kaminer I, Zhen B, Joannopoulos JD, Soljačić M (2016) Science 353(6296):263. http://science.sciencemag.org/content/353/6296/263,  https://doi.org/10.1126/science.aaf6308
  55. 55.
    Cuartero-González A, Fernández-Domínguez AI (2018) ACS Photon 5(8):3415.  https://doi.org/10.1021/acsphotonics.8b00678CrossRefGoogle Scholar
  56. 56.
    Gonçalves PAD, Christensen T, Rivera N, Jauho, AP, Mortensen NA, Soljačić, M (2020) Plasmon-emitter interactions at the nanoscale. Nat Commun 11:366.  https://doi.org/10.1038/s41467-019-13820-z
  57. 57.
    Brongersma ML, Halas NJ, Nordlander P (2015) Nat Nanotechnol 10(1):25. https://www.nature.com/articles/nnano.2014.311,  https://doi.org/10.1038/nnano.2014.311
  58. 58.
    Mukherjee S, Libisch F, Large N, Neumann O, Brown LV, Cheng J, Lassiter JB, Carter EA, Nordlander P, Halas NJ (2013) Nano Lett 13(1):240.  https://doi.org/10.1021/nl303940zADSCrossRefGoogle Scholar
  59. 59.
    Zhou L, Swearer DF, Zhang C, Robatjazi H, Zhao H, Henderson L, Dong L, Christopher P, Carter EA, Nordlander P et al (2018) Science 362(6410):69. http://science.sciencemag.org/content/362/6410/69,  https://doi.org/10.1126/science.aat696
  60. 60.
    Baumberg JJ (2019) Faraday Discuss 214:501.  https://doi.org/10.1039/C9FD00027EADSCrossRefGoogle Scholar
  61. 61.
    Seemala B, Therrien AJ, Lou M, Li K, Finzel JP, Qi J, Nordlander P, Christopher P (2019) ACS Energy Lett 4:1803.  https://doi.org/10.1021/acsenergylett.9b00990CrossRefGoogle Scholar
  62. 62.
    Scholl JA, Koh AL, Dionne JA (2012) Nature 483(7390):421. https://www.nature.com/articles/nature10904,  https://doi.org/10.1038/nature10904
  63. 63.
    Kern J, Großmann S, Tarakina NV, Häckel T, Emmerling M, Kamp M, Huang JS, Biagioni P, Prangsma JC, Hecht B (2012) Nano Lett 12(11):5504.  https://doi.org/10.1021/nl302315gADSCrossRefGoogle Scholar
  64. 64.
    Chen X, Park HR, Pelton M, Piao X, Lindquist NC, Im H, Kim YJ, Ahn JS, Ahn KJ, Park N, Kim DS, Oh SH (2013) Nat Commun 4:2361.  https://doi.org/10.1038/ncomms3361ADSCrossRefGoogle Scholar
  65. 65.
    Raza S, Kadkhodazadeh S, Christensen T, Di Vece M, Wubs M, Mortensen NA, Stenger N (2015) Nat Commun 6:8788. https://www.nature.com/articles/ncomms9788,  https://doi.org/10.1038/ncomms9788
  66. 66.
    Campos A, Troc N, Cottancin E, Pellarin M, Weissker HC, Lermé J, Kociakand M, Hillenkamp M (2018) Nat Phys  https://doi.org/10.1038/s41567-018-0345-z
  67. 67.
    Yang Y, Di Z, Yan W, Agarwal A, Zheng M, Joannopoulos JD, Lalanne P, Christensen T, Berggren KK, Soljačić M (2019) A general theoretical and experimental framework for nanoscale electromagnetism. Nature 576(7786):248–252.  https://doi.org/10.1038/s41586-019-1803-1
  68. 68.
    Albert Polman MK, García de Abajo FJ (2019) Nat Mater.  https://doi.org/10.1038/s41563-019-0409-1
  69. 69.
    Varas A, García-González P, Feist J, García-Vidal FJ, Rubio A (2016) Nanophotonics 5(3):409.  https://doi.org/10.1515/nanoph-2015-0141CrossRefGoogle Scholar
  70. 70.
    Zhang P, Feist J, Rubio A, García-González P, García-Vidal FJ (2014) Phys Rev B 90:161407.  https://doi.org/10.1103/PhysRevB.90.161407
  71. 71.
    Liebsch A (1997) Electronic excitations at metal surfaces. Springer, New YorkCrossRefGoogle Scholar
  72. 72.
    Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P, Lezec HJ, Aizpurua J, Crozier KB (2016) Nat Commun 7:11495.  https://doi.org/10.1038/ncomms11495
  73. 73.
    Christensen T, Yan W, Jauho AP, Soljačić M, Mortensen NA (2017) Phys Rev Lett 118:157402.  https://doi.org/10.1103/PhysRevLett.118.157402
  74. 74.
    Boardman AD (1982) Electromagnetic surface modes. WileyGoogle Scholar
  75. 75.
    Raza S, Bozhevolnyi SI, Wubs M, Mortensen NA (2015) J Phys Condens Matter 27(18):183204. https://iopscience.iop.org/article/10.1088/0953-8984/27/18/183204/meta,  https://doi.org/10.1088/0953-8984/27/18/183204
  76. 76.
    Ruppin R (1973) Phys Rev Lett 31:1434.  https://doi.org/10.1103/PhysRevLett.31.1434
  77. 77.
  78. 78.
    Christensen T, Yan W, Raza S, Jauho AP, Mortensen NA, Wubs M (2014) ACS Nano 8(2):1745.  https://doi.org/10.1021/nn406153kCrossRefGoogle Scholar
  79. 79.
    Ginzburg P, Zayats AV (2013) ACS Nano 7(5):4334.  https://doi.org/10.1021/nn400842mCrossRefGoogle Scholar
  80. 80.
  81. 81.
    Mortensen NA, Raza S, Wubs M, Søndergaard T, Bozhevolnyi SI (2014) Nat Commun 5:3809.  https://doi.org/10.1038/ncomms4809ADSCrossRefGoogle Scholar
  82. 82.
    Feibelman PJ (1982) Prog Surf Sci 12(4):287.  https://doi.org/10.1016/0079-6816(82)90001-6ADSCrossRefGoogle Scholar
  83. 83.
  84. 84.
    Teperik TV, Nordlander P, Aizpurua J, Borisov AG (2013) Phys Rev Lett 110:263901.  https://doi.org/10.1103/PhysRevLett.110.263901ADSCrossRefGoogle Scholar
  85. 85.
    Yan W, Wubs M, Asger Mortensen N (2015) Phys Rev Lett 115:137403.  https://doi.org/10.1103/PhysRevLett.115.137403
  86. 86.
    Jin D, Hu Q, Neuhauser D, von Cube F, Yang Y, Sachan R, Luk TS, Bell DC, Fang NX (2015) Phys Rev Lett 115:193901.  https://doi.org/10.1103/PhysRevLett.115.193901
  87. 87.
    Bozhevolnyi SI, Martin-Moreno L, García-Vidal F (2017) Quantum plasmonics. SpringerGoogle Scholar
  88. 88.
    Tame MS, McEnery KR, Özdemir K, Lee J, Maier SA, Kim MS (2013) Nat Phys 9:329–340.  https://doi.org/10.1038/nphys2615CrossRefGoogle Scholar
  89. 89.
    Bozhevolnyi SI, Mortensen NA (2017) Nanophotonics 6:1185.  https://doi.org/10.1515/nanoph-2016-0179CrossRefGoogle Scholar
  90. 90.
    Grigorenko AN, Polini M, Novoselov KS (2012) Nat Photon 6:749 https://doi.org/nphoton.2012.262
  91. 91.
    Low T, Avouris P (2014) ACS Nano 8(2):1086.  https://doi.org/10.1021/nn406627uCrossRefGoogle Scholar
  92. 92.
    García de Abajo FJ (2014) ACS Photon 1(3):135.  https://doi.org/10.1021/ph400147yCrossRefGoogle Scholar
  93. 93.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306(5696):666. https://science.sciencemag.org/content/306/5696/666,  https://doi.org/10.1126/science.1102896
  94. 94.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Nature 438:197. https://www.nature.com/articles/nature04233,  https://doi.org/10.1038/nature04233
  95. 95.
    Zhang Y, Tan YW, Stormer HL, Kim P (2005) Nature 438:201. https://www.nature.com/articles/nature04235,  https://doi.org/10.1038/nature04235
  96. 96.
    Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Proc Natl Acad Sci USA 102(30):10451. https://www.pnas.org/content/102/30/10451,  https://doi.org/10.1073/pnas.0502848102
  97. 97.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109.  https://doi.org/10.1103/RevModPhys.81.109
  98. 98.
    Katsnelson MI (2012) Graphene: carbon in two dimensions. Cambridge University Press.  https://doi.org/10.1017/CBO9781139031080
  99. 99.
    Lee C, Wei X, Kysar JW, Hone J (2008) Science 321(5887):385. https://science.sciencemag.org/content/321/5887/385,  https://doi.org/10.1126/science.1157996
  100. 100.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8(3):902.  https://doi.org/10.1021/nl0731872ADSCrossRefGoogle Scholar
  101. 101.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Nat Photon 4:611.  https://doi.org/10.1038/nphoton.2010.186ADSCrossRefGoogle Scholar
  102. 102.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Science 320(5881):1308. https://science.sciencemag.org/content/320/5881/1308,  https://doi.org/10.1126/science.1156965
  103. 103.
    Fei Z, Rodin AS, Andreev GO, Bao W, McLeod AS, Wagner M, Zhang LM, Zhao Z, Thiemens M, Dominguez G, Fogler MM, Neto AHC, Lau CN, Keilmann F, Basov DN (2012) Nature 487:82.  https://doi.org/10.1038/nature11253ADSCrossRefGoogle Scholar
  104. 104.
    Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza AZ, Camara N, García de Abajo FJ, Hillenbrand R, Koppens FHL (2012) Nature 487:77.  https://doi.org/10.1038/nature11254ADSCrossRefGoogle Scholar
  105. 105.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M, Watanabe K, Taniguchi T, Vignale G, Polini M, Hone J, Hillenbrand R, Koppens FHL (2015) Nat Mater 14:421. https://www.nature.com/articles/nmat4169,  https://doi.org/10.1038/nmat4169
  106. 106.
    Lundeberg MB, Gao Y, Asgari R, Tan C, Van Duppen B, Autore M, Alonso-González P, Woessner A, Watanabe K, Taniguchi T, Hillenbrand R, Hone J, Polini M, Koppens FHL (2017) Science 357(6347):187. http://science.sciencemag.org/content/357/6347/187,  https://doi.org/10.1126/science.aan2735
  107. 107.
    Alcaraz Iranzo D, Nanot S, Dias EJC, Epstein I, Peng C, Efetov DK, Lundeberg MB, Parret R, Osmond J, Hong JY, Kong J, Englund DR, Peres NMR, Koppens FHL (2018) Science 360(6386):291. https://science.sciencemag.org/content/360/6386/291,  https://doi.org/10.1126/science.aar8438
  108. 108.
    Ni GX, McLeod AS, Sun Z, Wang L, Xiong L, Post KW, Sunku SS, Jiang BY, Hone J, Dean CR, Fogler MM, Basov DN (2018) Nature 557:530.  https://doi.org/10.1038/s41586-018-0136-9ADSCrossRefGoogle Scholar
  109. 109.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Nat Nanotechnol 6:630. https://www.nature.com/articles/nnano.2011.146,  https://doi.org/10.1038/nnano.2011.146
  110. 110.
    Rodrigo D, Limaj O, Janner D, Etezadi D, García de Abajo FJ, Pruneri V, Altug H (2015) Science 349(6244):165. https://science.sciencemag.org/content/349/6244/165,  https://doi.org/10.1126/science.aab2051
  111. 111.
    Liu H, Liu Y, Zhu D (2011) J Mater Chem 21:3335.  https://doi.org/10.1039/C0JM02922JCrossRefGoogle Scholar
  112. 112.
    Boltasseva A, Shalaev VM (2019) ACS Photon 6(1):1.  https://doi.org/10.1021/acsphotonics.8b01570CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Nano OpticsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations