Blockchain Applications in Power Systems: A Bibliometric Analysis

  • Hossein Mohammadi Rouzbahani
  • Hadis KarimipourEmail author
  • Ali Dehghantanha
  • Reza M. Parizi
Part of the Advances in Information Security book series (ADIS, volume 79)


Power systems are growing rapidly, due to ever-increasing demand for electrical power. These systems require novel methodologies and modern tools and technologies, to better perform, particularly for communication among different parts. Therefore, power systems are facing new challenges such as energy trading and marketing and cyber threats. Using blockchain in power systems, as a solution, is one of the newest methods. Most studies aim to investigate innovative approaches of blockchain application in power systems. Even though, many articles published to support the research activities, there has not been any bibliometric analysis which specifies the research trends. This paper aims to present a bibliographic analysis of the blockchain application in power systems related literature, in the Web of Science (WoS) database between January 2009 and July 2019. This paper discusses the research activities and performed a detailed analysis by looking at the number of articles published, citations, institutions, research area, and authors. From the analysis, it was concluded that there are several significant impacts of research activities in China and USA, in comparison to other countries.


Blockchain Bibliometric analysis Distributed ledger Power system Electrical energy trading Security challenges 


  1. 1.
    L. Abdallah, T. El-Shennawy, Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. J. Eng. 2013, 1–8 (2013). CrossRefGoogle Scholar
  2. 2.
    H.M. Ruzbahani, H. Karimipour, Optimal incentive-based demand response management of smart households. in 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS) (2018), pp. 1–7.
  3. 3.
    H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7, 80778–80788 (2019). CrossRefGoogle Scholar
  4. 4.
    D. Tan, Energy challenge, power electronics & systems (PEAS) technology and grid modernization. CPSS Trans. Power Electron. Appl. 2(1), 3–11 (2017). CrossRefGoogle Scholar
  5. 5.
    H. Rouzbahani, Smart households demand response management with micro grid (n.d.). Arxiv.Org. Retrieved from
  6. 6.
    V. Dinavahi, H. Karimipour, Parallel relaxation-based joint dynamic state estimation of large-scale power systems. IET Gener. Transm. Distrib. 10(2), 452–459 (2016). CrossRefGoogle Scholar
  7. 7.
    F. Ghalavand, I. Al-Omari, H. Karimipour, Hybrid islanding detection for ac/dc network using DC-link voltage (n.d.). Ieeexplore.Ieee.Org. Retrieved from
  8. 8.
    F. Ghalavand, B. Alizade, H. Gaber, H. Karimipour, Microgrid islanding detection based on mathematical morphology. Energies 11(10), 2696 (2018a). CrossRefGoogle Scholar
  9. 9.
    F. Ghalavand, B. Alizade, H. Gaber, H. Karimipour, F. Ghalavand, B.A.M. Alizade, H. Karimipour, Microgrid islanding detection based on mathematical morphology. Energies 11(10), 2696 (2018b). CrossRefGoogle Scholar
  10. 10.
    H. Karimipour, International, On false data injection attack against dynamic state estimation on smart power grids (n.d.). Ieeexplore.Ieee.Org. Retrieved from
  11. 11.
    H. Karimipour, Power, Accelerated parallel WLS state estimation for large-scale power systems on GPU (n.d.). Ieeexplore.Ieee.Org. Retrieved from
  12. 12.
    H. Karimipour, Power, On detailed synchronous generator modeling for massively parallel dynamic state estimation (n.d.). Ieeexplore.Ieee.Org. Retrieved from
  13. 13.
    H. Karimipour, V. Dinavahi, On false data injection attack against dynamic state estimation on smart power grids. in 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE) (2017), pp. 388–393.
  14. 14.
    H. Karimipour, V. Dinavahi, Robust massively parallel dynamic state estimation of power systems against cyber-attack. IEEE Access 6, 2984–2995 (2018). CrossRefGoogle Scholar
  15. 15.
    J. Sakhnini, H. Karimipour, A. Dehghantanha, Smart grid cyber attacks detection using supervised learning and heuristic feature selection (2019). Retrieved from
  16. 16.
    S. Zhou, M.A. Brown, Smart meter deployment in Europe: a comparative case study on the impacts of national policy schemes. J. Clean. Prod. 144, 22–32 (2017). CrossRefGoogle Scholar
  17. 17.
    A.J. Goldsmith, S.B. Wicker, Design challenges for energy-constrained ad hoc wireless networks. IEEE Wirel. Commun. 9(4), 8–27 (2002). CrossRefGoogle Scholar
  18. 18.
    R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 18(1), 236–262 (2016). CrossRefGoogle Scholar
  19. 19.
    U. Ahsan, A. Bais, Distributed big data management in smart grid. in 2017 26th Wireless and Optical Communication Conference (WOCC) (2017), pp. 1–6.
  20. 20.
    E. Dovom, A. Azmoodeh, D.-J. Karimipour, Fuzzy pattern tree for edge malware detection and categorization in IoT. Elsevier (n.d.). Retrieved from
  21. 21.
    S. Mohammadi, Cyber intrusion detection by combined feature selection algorithm. Elsevier (n.d.). Retrieved from
  22. 22.
    M. Parizi, A. Dehghantanha, On the understanding of gamification in blockchain systems. in 2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW) (2018), pp. 214–219.
  23. 23.
    R.M. Parizi, A. Amritraj, Dehghantanha, smart contract programming languages on blockchains: an empirical evaluation of usability and security (2018). Google Scholar
  24. 24.
    S. Aggarwal, R. Chaudhary, G.S. Aujla, A. Jindal, A. Dua, N. Kumar, EnergyChain. in Proceedings of the 1st ACM MobiHoc Workshop on Networking and Cybersecurity for Smart Cities - SmartCitiesSecurity’18 (2018), pp. 1–6.
  25. 25.
    P.J. Taylor, T. Dargahi, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, A systematic literature review of blockchain cyber security. Digital Commun. Netw. (2019).
  26. 26.
    F. Dai, Y. Shi, N. Meng, L. Wei, Z. Ye, From Bitcoin to cybersecurity: a comparative study of blockchain application and security issues. in 2017 4th International Conference on Systems and Informatics (ICSAI) (2017), pp. 975–979.
  27. 27.
    R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating privacy enhancing techniques into blockchains using sidechains (2019). Retrieved from
  28. 28.
    A. Dorri, F. Luo, S.S. Kanhere, R. Jurdak, Z.Y. Dong, A secure and efficient direct power load control framework based on blockchain (2018). Retrieved from
  29. 29.
    T. Yang, F. Zhai, J. Liu, M. Wang, H. Pen, Self-organized cyber physical power system blockchain architecture and protocol. Int. J. Distrib. Sens. Netw. 14(10), 155014771880331 (2018). CrossRefGoogle Scholar
  30. 30.
    G. Liang, S.R. Weller, F. Luo, J. Zhao, Z.Y. Dong, Distributed blockchain-based data protection framework for modern power systems against cyber attacks. IEEE Trans. Smart Grid 10(3), 3162–3173 (2019). CrossRefGoogle Scholar
  31. 31.
    N.Z. Aitzhan, D. Svetinovic, Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secure Comput. 15(5), 840–852 (2018). CrossRefGoogle Scholar
  32. 32.
    K. Mannaro, A. Pinna, M. Marchesi, Crypto-trading: blockchain-oriented energy market. in 2017 AEIT International Annual Conference (2017), pp. 1–5.
  33. 33.
    M. Meisel, S. Wilker, A.G. Goranovic, L. Fotiadis, T. Sauter, Blockchain applications in microgrids an overview of current projects and concepts Thilo Sauter TU Wien blockchain applications in microgrids an overview of current projects and concepts (n.d.).
  34. 34.
    M. Mihaylov, I. Razo-Zapata, A. Nowé, NRGcoin—a blockchain-based reward mechanism for both production and consumption of renewable energy. Transforming climate finance and green investment with blockchains (2018), pp. 111–131. CrossRefGoogle Scholar
  35. 35.
    F. Vanrykel, D. Ernst, M. Bourgeois, Fostering share & charge through proper regulation. Compet. Regul. Netw. Ind. 19(1–2), 25–52 (2018). CrossRefGoogle Scholar
  36. 36.
    R. Chitchyan, J. Murkin, Review of blockchain technology and its expectations: case of the energy sector (2018). Retrieved from
  37. 37.
    A.V. Vladimirova, Blockchain revolution in global environmental governance: too good to be true? (2019). CrossRefGoogle Scholar
  38. 38.
    M.F.A. Razak, N.B. Anuar, R. Salleh, A. Firdaus, The rise of “malware”: bibliometric analysis of malware study. J. Netw. Comput. Appl. 75, 58–76 (2016). CrossRefGoogle Scholar
  39. 39.
    H.D. White, Pennants for garfield: bibliometrics and document retrieval. Scientometrics 114(2), 757–778 (2018). CrossRefGoogle Scholar
  40. 40.
    Information, Formalized curiosity: reflecting on the librarian practitioner-researcher. Ejournals.Library.Ualberta.Ca (n.d.). Retrieved from
  41. 41.
    P. Mongeon, A. Paul-Hus, The journal coverage of web of science and scopus: a comparative analysis. Scientometrics 106(1), 213–228 (2016). CrossRefGoogle Scholar
  42. 42.
    J. Koskinen, M. Isohanni, H. Paajala, E. Jääskeläinen, P. Nieminen, H. Koponen, J. Miettunen, How to use bibliometric methods in evaluation of scientific research? An example from Finnish schizophrenia research. Nord. J. Psychiatry 62(2), 136–143 (2008). CrossRefGoogle Scholar
  43. 43.
    A. Pilkington, J. Meredith, The evolution of the intellectual structure of operations management—1980–2006: a citation/co-citation analysis. J. Oper. Manag. 27(3), 185–202 (2009). CrossRefGoogle Scholar
  44. 44.
    M. Dabbagh, M. Sookhak, N.S. Safa, The evolution of blockchain: a bibliometric study. IEEE Access 7, 19212–19221 (2019). CrossRefGoogle Scholar
  45. 45.
    W. Woon, H. Zeineldin, Bibliometric analysis of distributed generation. Elsevier (n.d.). Retrieved from
  46. 46.
    L.S. Adriaanse, C. Rensleigh, Comparing web of science, scopus and google scholar from an environmental sciences perspective. South Afr. J. Libr. Inf. Sci. 77(2), 58 (2011). CrossRefGoogle Scholar
  47. 47.
    J. Li, J.F. Burnham, T. Lemley, R.M. Britton, Citation analysis: comparison of Web of Science®, Scopus, SciFinder®, and Google Scholar. J. Electron. Res. Med. Libr. 7(3), 196–217 (2010). CrossRefGoogle Scholar
  48. 48.
    C. López-Illescas, F. de Moya-Anegón, H.F. Moed, Coverage and citation impact of oncological journals in the web of science and scopus. J. Informet. 2(4), 304–316 (2008). CrossRefGoogle Scholar
  49. 49.
    S. Miau, J.-M. Yang, Bibliometrics-based evaluation of the Blockchain research trend: 2008 – March 2017. Tech. Anal. Strat. Manag. 30(9), 1029–1045 (2018). CrossRefGoogle Scholar
  50. 50.
    E. Hache, A. Palle, Renewable energy source integration into power networks, research trends and policy implications: a bibliometric and research actors survey analysis. Energy Policy 124, 23–35 (2019). CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of GuelphGuelphCanada
  2. 2.Cyber Science LabSchool of Computer Science, University of GuelphGuelphCanada
  3. 3.College of Computing and Software Engineering, Kennesaw State UniversityMariettaUSA

Personalised recommendations