Advertisement

Blockchain Applications in Power Systems: A Bibliometric Analysis

  • Hossein Mohammadi Rouzbahani
  • Hadis KarimipourEmail author
  • Ali Dehghantanha
  • Reza M. Parizi
Chapter
  • 81 Downloads
Part of the Advances in Information Security book series (ADIS, volume 79)

Abstract

Power systems are growing rapidly, due to ever-increasing demand for electrical power. These systems require novel methodologies and modern tools and technologies, to better perform, particularly for communication among different parts. Therefore, power systems are facing new challenges such as energy trading and marketing and cyber threats. Using blockchain in power systems, as a solution, is one of the newest methods. Most studies aim to investigate innovative approaches of blockchain application in power systems. Even though, many articles published to support the research activities, there has not been any bibliometric analysis which specifies the research trends. This paper aims to present a bibliographic analysis of the blockchain application in power systems related literature, in the Web of Science (WoS) database between January 2009 and July 2019. This paper discusses the research activities and performed a detailed analysis by looking at the number of articles published, citations, institutions, research area, and authors. From the analysis, it was concluded that there are several significant impacts of research activities in China and USA, in comparison to other countries.

Keywords

Blockchain Bibliometric analysis Distributed ledger Power system Electrical energy trading Security challenges 

References

  1. 1.
    L. Abdallah, T. El-Shennawy, Reducing carbon dioxide emissions from electricity sector using smart electric grid applications. J. Eng. 2013, 1–8 (2013).  https://doi.org/10.1155/2013/845051 CrossRefGoogle Scholar
  2. 2.
    H.M. Ruzbahani, H. Karimipour, Optimal incentive-based demand response management of smart households. in 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS) (2018), pp. 1–7.  https://doi.org/10.1109/ICPS.2018.8369971
  3. 3.
    H. Karimipour, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7, 80778–80788 (2019).  https://doi.org/10.1109/ACCESS.2019.2920326 CrossRefGoogle Scholar
  4. 4.
    D. Tan, Energy challenge, power electronics & systems (PEAS) technology and grid modernization. CPSS Trans. Power Electron. Appl. 2(1), 3–11 (2017).  https://doi.org/10.24295/CPSSTPEA.2017.00002 CrossRefGoogle Scholar
  5. 5.
    H. Rouzbahani, Smart households demand response management with micro grid (n.d.). Arxiv.Org. Retrieved from https://arxiv.org/abs/1907.03641
  6. 6.
    V. Dinavahi, H. Karimipour, Parallel relaxation-based joint dynamic state estimation of large-scale power systems. IET Gener. Transm. Distrib. 10(2), 452–459 (2016).  https://doi.org/10.1049/iet-gtd.2015.0808 CrossRefGoogle Scholar
  7. 7.
    F. Ghalavand, I. Al-Omari, H. Karimipour, Hybrid islanding detection for ac/dc network using DC-link voltage (n.d.). Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/8499479/
  8. 8.
    F. Ghalavand, B. Alizade, H. Gaber, H. Karimipour, Microgrid islanding detection based on mathematical morphology. Energies 11(10), 2696 (2018a).  https://doi.org/10.3390/en11102696 CrossRefGoogle Scholar
  9. 9.
    F. Ghalavand, B. Alizade, H. Gaber, H. Karimipour, F. Ghalavand, B.A.M. Alizade, H. Karimipour, Microgrid islanding detection based on mathematical morphology. Energies 11(10), 2696 (2018b).  https://doi.org/10.3390/en11102696 CrossRefGoogle Scholar
  10. 10.
    H. Karimipour, International, On false data injection attack against dynamic state estimation on smart power grids (n.d.). Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/8052831/
  11. 11.
    H. Karimipour, Power, Accelerated parallel WLS state estimation for large-scale power systems on GPU (n.d.). Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/6666827/
  12. 12.
    H. Karimipour, Power, On detailed synchronous generator modeling for massively parallel dynamic state estimation (n.d.). Ieeexplore.Ieee.Org. Retrieved from https://ieeexplore.ieee.org/abstract/document/6965417/
  13. 13.
    H. Karimipour, V. Dinavahi, On false data injection attack against dynamic state estimation on smart power grids. in 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE) (2017), pp. 388–393.  https://doi.org/10.1109/SEGE.2017.8052831
  14. 14.
    H. Karimipour, V. Dinavahi, Robust massively parallel dynamic state estimation of power systems against cyber-attack. IEEE Access 6, 2984–2995 (2018).  https://doi.org/10.1109/ACCESS.2017.2786584 CrossRefGoogle Scholar
  15. 15.
    J. Sakhnini, H. Karimipour, A. Dehghantanha, Smart grid cyber attacks detection using supervised learning and heuristic feature selection (2019). Retrieved from http://arxiv.org/abs/1907.03313
  16. 16.
    S. Zhou, M.A. Brown, Smart meter deployment in Europe: a comparative case study on the impacts of national policy schemes. J. Clean. Prod. 144, 22–32 (2017).  https://doi.org/10.1016/j.jclepro.2016.12.031 CrossRefGoogle Scholar
  17. 17.
    A.J. Goldsmith, S.B. Wicker, Design challenges for energy-constrained ad hoc wireless networks. IEEE Wirel. Commun. 9(4), 8–27 (2002).  https://doi.org/10.1109/MWC.2002.1028874 CrossRefGoogle Scholar
  18. 18.
    R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, R. Boutaba, Network function virtualization: state-of-the-art and research challenges. IEEE Commun. Surv. Tutorials 18(1), 236–262 (2016).  https://doi.org/10.1109/COMST.2015.2477041 CrossRefGoogle Scholar
  19. 19.
    U. Ahsan, A. Bais, Distributed big data management in smart grid. in 2017 26th Wireless and Optical Communication Conference (WOCC) (2017), pp. 1–6.  https://doi.org/10.1109/WOCC.2017.7928971
  20. 20.
    E. Dovom, A. Azmoodeh, D.-J. Karimipour, Fuzzy pattern tree for edge malware detection and categorization in IoT. Elsevier (n.d.). Retrieved from https://www.sciencedirect.com/science/article/pii/S1383762118305265
  21. 21.
    S. Mohammadi, Cyber intrusion detection by combined feature selection algorithm. Elsevier (n.d.). Retrieved from https://www.sciencedirect.com/science/article/pii/S2214212618304617
  22. 22.
    M. Parizi, A. Dehghantanha, On the understanding of gamification in blockchain systems. in 2018 6th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW) (2018), pp. 214–219.  https://doi.org/10.1109/W-FiCloud.2018.00041
  23. 23.
    R.M. Parizi, A. Amritraj, Dehghantanha, smart contract programming languages on blockchains: an empirical evaluation of usability and security (2018).  https://doi.org/10.1007/978-3-319-94478-4_6 Google Scholar
  24. 24.
    S. Aggarwal, R. Chaudhary, G.S. Aujla, A. Jindal, A. Dua, N. Kumar, EnergyChain. in Proceedings of the 1st ACM MobiHoc Workshop on Networking and Cybersecurity for Smart Cities - SmartCitiesSecurity’18 (2018), pp. 1–6.  https://doi.org/10.1145/3214701.3214704
  25. 25.
    P.J. Taylor, T. Dargahi, A. Dehghantanha, R.M. Parizi, K.-K.R. Choo, A systematic literature review of blockchain cyber security. Digital Commun. Netw. (2019).  https://doi.org/10.1016/j.dcan.2019.01.005
  26. 26.
    F. Dai, Y. Shi, N. Meng, L. Wei, Z. Ye, From Bitcoin to cybersecurity: a comparative study of blockchain application and security issues. in 2017 4th International Conference on Systems and Informatics (ICSAI) (2017), pp. 975–979.  https://doi.org/10.1109/ICSAI.2017.8248427
  27. 27.
    R.M. Parizi, S. Homayoun, A. Yazdinejad, A. Dehghantanha, K.-K.R. Choo, Integrating privacy enhancing techniques into blockchains using sidechains (2019). Retrieved from http://arxiv.org/abs/1906.04953
  28. 28.
    A. Dorri, F. Luo, S.S. Kanhere, R. Jurdak, Z.Y. Dong, A secure and efficient direct power load control framework based on blockchain (2018). Retrieved from http://arxiv.org/abs/1812.08497
  29. 29.
    T. Yang, F. Zhai, J. Liu, M. Wang, H. Pen, Self-organized cyber physical power system blockchain architecture and protocol. Int. J. Distrib. Sens. Netw. 14(10), 155014771880331 (2018).  https://doi.org/10.1177/1550147718803311 CrossRefGoogle Scholar
  30. 30.
    G. Liang, S.R. Weller, F. Luo, J. Zhao, Z.Y. Dong, Distributed blockchain-based data protection framework for modern power systems against cyber attacks. IEEE Trans. Smart Grid 10(3), 3162–3173 (2019).  https://doi.org/10.1109/TSG.2018.2819663 CrossRefGoogle Scholar
  31. 31.
    N.Z. Aitzhan, D. Svetinovic, Security and privacy in decentralized energy trading through multi-signatures, blockchain and anonymous messaging streams. IEEE Trans. Dependable Secure Comput. 15(5), 840–852 (2018).  https://doi.org/10.1109/TDSC.2016.2616861 CrossRefGoogle Scholar
  32. 32.
    K. Mannaro, A. Pinna, M. Marchesi, Crypto-trading: blockchain-oriented energy market. in 2017 AEIT International Annual Conference (2017), pp. 1–5.  https://doi.org/10.23919/AEIT.2017.8240547
  33. 33.
    M. Meisel, S. Wilker, A.G. Goranovic, L. Fotiadis, T. Sauter, Blockchain applications in microgrids an overview of current projects and concepts Thilo Sauter TU Wien blockchain applications in microgrids an overview of current projects and concepts (n.d.).  https://doi.org/10.1109/IECON.2017.8217069
  34. 34.
    M. Mihaylov, I. Razo-Zapata, A. Nowé, NRGcoin—a blockchain-based reward mechanism for both production and consumption of renewable energy. Transforming climate finance and green investment with blockchains (2018), pp. 111–131.  https://doi.org/10.1016/B978-0-12-814447-3.00009-4 CrossRefGoogle Scholar
  35. 35.
    F. Vanrykel, D. Ernst, M. Bourgeois, Fostering share & charge through proper regulation. Compet. Regul. Netw. Ind. 19(1–2), 25–52 (2018).  https://doi.org/10.1177/1783591718809576 CrossRefGoogle Scholar
  36. 36.
    R. Chitchyan, J. Murkin, Review of blockchain technology and its expectations: case of the energy sector (2018). Retrieved from http://arxiv.org/abs/1803.03567
  37. 37.
    A.V. Vladimirova, Blockchain revolution in global environmental governance: too good to be true? (2019).  https://doi.org/10.1007/978-3-030-17705-8_18 CrossRefGoogle Scholar
  38. 38.
    M.F.A. Razak, N.B. Anuar, R. Salleh, A. Firdaus, The rise of “malware”: bibliometric analysis of malware study. J. Netw. Comput. Appl. 75, 58–76 (2016).  https://doi.org/10.1016/J.JNCA.2016.08.022 CrossRefGoogle Scholar
  39. 39.
    H.D. White, Pennants for garfield: bibliometrics and document retrieval. Scientometrics 114(2), 757–778 (2018).  https://doi.org/10.1007/s11192-017-2610-9 CrossRefGoogle Scholar
  40. 40.
    Information, Formalized curiosity: reflecting on the librarian practitioner-researcher. Ejournals.Library.Ualberta.Ca (n.d.). Retrieved from https://ejournals.library.ualberta.ca/index.php/EBLIP/article/download/18901/14819
  41. 41.
    P. Mongeon, A. Paul-Hus, The journal coverage of web of science and scopus: a comparative analysis. Scientometrics 106(1), 213–228 (2016).  https://doi.org/10.1007/s11192-015-1765-5 CrossRefGoogle Scholar
  42. 42.
    J. Koskinen, M. Isohanni, H. Paajala, E. Jääskeläinen, P. Nieminen, H. Koponen, J. Miettunen, How to use bibliometric methods in evaluation of scientific research? An example from Finnish schizophrenia research. Nord. J. Psychiatry 62(2), 136–143 (2008).  https://doi.org/10.1080/08039480801961667 CrossRefGoogle Scholar
  43. 43.
    A. Pilkington, J. Meredith, The evolution of the intellectual structure of operations management—1980–2006: a citation/co-citation analysis. J. Oper. Manag. 27(3), 185–202 (2009).  https://doi.org/10.1016/J.JOM.2008.08.001 CrossRefGoogle Scholar
  44. 44.
    M. Dabbagh, M. Sookhak, N.S. Safa, The evolution of blockchain: a bibliometric study. IEEE Access 7, 19212–19221 (2019).  https://doi.org/10.1109/ACCESS.2019.2895646 CrossRefGoogle Scholar
  45. 45.
    W. Woon, H. Zeineldin, Bibliometric analysis of distributed generation. Elsevier (n.d.). Retrieved from https://www.sciencedirect.com/science/article/pii/S0040162510002039
  46. 46.
    L.S. Adriaanse, C. Rensleigh, Comparing web of science, scopus and google scholar from an environmental sciences perspective. South Afr. J. Libr. Inf. Sci. 77(2), 58 (2011).  https://doi.org/10.7553/77-2-58 CrossRefGoogle Scholar
  47. 47.
    J. Li, J.F. Burnham, T. Lemley, R.M. Britton, Citation analysis: comparison of Web of Science®, Scopus, SciFinder®, and Google Scholar. J. Electron. Res. Med. Libr. 7(3), 196–217 (2010).  https://doi.org/10.1080/15424065.2010.505518 CrossRefGoogle Scholar
  48. 48.
    C. López-Illescas, F. de Moya-Anegón, H.F. Moed, Coverage and citation impact of oncological journals in the web of science and scopus. J. Informet. 2(4), 304–316 (2008).  https://doi.org/10.1016/J.JOI.2008.08.001 CrossRefGoogle Scholar
  49. 49.
    S. Miau, J.-M. Yang, Bibliometrics-based evaluation of the Blockchain research trend: 2008 – March 2017. Tech. Anal. Strat. Manag. 30(9), 1029–1045 (2018).  https://doi.org/10.1080/09537325.2018.1434138 CrossRefGoogle Scholar
  50. 50.
    E. Hache, A. Palle, Renewable energy source integration into power networks, research trends and policy implications: a bibliometric and research actors survey analysis. Energy Policy 124, 23–35 (2019).  https://doi.org/10.1016/j.enpol.2018.09.036 CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of GuelphGuelphCanada
  2. 2.Cyber Science LabSchool of Computer Science, University of GuelphGuelphCanada
  3. 3.College of Computing and Software Engineering, Kennesaw State UniversityMariettaUSA

Personalised recommendations