The Representation of Fiber Misalignment Distributions in Numerical Modeling of Compressive Failure of Fiber Reinforced Polymers

  • N. SafdarEmail author
  • B. Daum
  • R. Rolfes
  • O. Allix
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 93)


This chapter introduces a methodology to implement systematically spatially varying fiber misalignment distribution characterized experimentally into numerical modeling for failure surface analyses under in-plane loading conditions in compressive domain. If stochastically characterized spectral density of fiber misalignment by performing averaging over measured data as an ensemble is available, the approach allows designers to enhance the efficient usage of Fiber Reinforced Polymers (FRPs) by utilizing maximum capacity of the material with calculable reliability. In the present work, Fourier transform algorithms generally used in signal processing theory, are employed to generate representative distributions of fiber misalignments. The generated distributions are then mapped onto a numerical model as fluctuations of the material orientations. Through Monte Carlo analyses, probability distribution of peak stresses are subsequently calculated. This information is then used to define a probabilistic failure surface.


  1. 1.
    Soutis, C. (2005). Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences, 41(2), 143–151.CrossRefGoogle Scholar
  2. 2.
    Boeing. 787 dreamliner by design: Advanced composites use. Accessed June 21, 2019.
  3. 3.
    Liu, L., Zhang, B.-M., Wang, D.-F., & Wu, Z.-J. (2006). Effects of cure cycles on void content and mechanical properties of composite laminates. Composite Structures, 73(3), 303–309.CrossRefGoogle Scholar
  4. 4.
    Yurgartis, S. W. (1987). Measurement of small angle fiber misalignments in continuous fiber composites. Composites Science and Technology, 30(4), 279–293.CrossRefGoogle Scholar
  5. 5.
    Paluch, B. (1996). Analysis of geometric imperfections affecting the fibers in unidirectional composites. Journal of Composite Materials, 30(4), 454–485.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jelf, P. M., & Fleck, N. A. (1992). Compression failure mechanisms in unidirectional composites. Journal of Composite Materials, 26(18), 2706–2726.CrossRefGoogle Scholar
  7. 7.
    Wisnom, M. R. (1991). Relationship between strength variability and size effect in unidirectional carbon fibre/epoxy. Composites, 22(1), 47–52.CrossRefGoogle Scholar
  8. 8.
    Liu, D., Fleck, N. A., & Sutcliffe, M. P. F. (2004). Compressive strength of fibre composites with random fibre waviness. Journal of the Mechanics and Physics of Solids, 52(7), 1481–1505.CrossRefGoogle Scholar
  9. 9.
    Sutcliffe, M. P. F. (2013). Modelling the effect of size on compressive strength of fibre composites with random waviness. Composites Science and Technology, 88(Supplement C), 142–150.CrossRefGoogle Scholar
  10. 10.
    Lekou, D. J., & Philippidis, T. P. (2008). Mechanical property variability in FRP laminates and its effect on failure prediction. Composites Part B: Engineering, 39(7), 1247–1256.CrossRefGoogle Scholar
  11. 11.
    Whiteside, M. B., Pinho, S. T., & Robinson, P. (2012). Stochastic failure modelling of unidirectional composite ply failure. Reliability Engineering and System Safety, 108, 1–9.CrossRefGoogle Scholar
  12. 12.
    Kaddour, A. S., & Hinton, M. J. (2012). Input data for test cases used in benchmarking triaxial failure theories of composites. Journal of Composite Materials, 46(19–20), 2295–2312.CrossRefGoogle Scholar
  13. 13.
    Slaughter, W. S., & Fleck, N. A. (1994). Microbuckling of fiber composites with random initial fiber waviness. Journal of the Mechanics and Physics of Solids, 42(11), 1743–1766.CrossRefGoogle Scholar
  14. 14.
    Safdar, N., Daum, B., & Rolfes, R. (2018). Stochastic compressive failure surface modelling for the unidirectional fibre reinforced composites under plainstress. In 6th European Conference on Computational Mechanics, Glasgow.Google Scholar
  15. 15.
    Clarke, A. R., Archenhold, G., Davidson, N. C., Slaughter, W. S., & Fleck, N. A. (1995). Determining the power spectral density of the waviness of unidirectional glass fibres in polymer composites. Applied Composite Materials, 2(4), 233–243.CrossRefGoogle Scholar
  16. 16.
    Sutcliffe, M. P. F., Lemanski, S. L., & Scott, A. E. (2012). Measurement of fibre waviness in industrial composite components. Composites Science and Technology, 72(16), 2016–2023.CrossRefGoogle Scholar
  17. 17.
    Budiansky, B., & Fleck, N. A. (1993). Compressive failure of fibre composites. Journal of the Mechanics and Physics of Solids, 41(1), 183–211.CrossRefGoogle Scholar
  18. 18.
    Rosen, B.W. (1965). Mechanics of composite strengthening.Google Scholar
  19. 19.
    Argon, A. S. (1972). Fracture of composites. Treatise on Materials Science and Technology, 1, 79–114.CrossRefGoogle Scholar
  20. 20.
    Budiansky, B. (1983). Micromechanics. Computers and Structures, 16(1), 3–12.CrossRefGoogle Scholar
  21. 21.
    Fleck, N. A., & John, Y. S. (1995). Microbuckle initiation in fibre composites : A finite element study. Journal of the Mechanics and Physics of Solids, 43(12), 1887–1918.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kyriakides, S., Arseculeratne, R., Perry, E. J., & Liechti, K. M. (1995). On the compressive failure of fiber reinforced composites. International Journal of Solids and Structures, 32(6), 689–738. Time Dependent Problems in Mechanics.CrossRefGoogle Scholar
  23. 23.
    Yerramalli, C. S., & Waas, A. M. (2004). The effect of fiber diameter on the compressive strength of composites-A 3D finite element based study. Computer Modeling in Engineering and Sciences, 6, 1–16.zbMATHGoogle Scholar
  24. 24.
    Prabhakar, P., & Waas, A. M. (2013). Micromechanical modeling to determine the compressive strength and failure mode interaction of multidirectional laminates. Composites Part A: Applied Science and Manufacturing, 50, 11–21.CrossRefGoogle Scholar
  25. 25.
    Romanowicz, M. (2014). Initiation of kink bands from regions of higher misalignment in carbon fiber-reinforced polymers. Journal of Composite Materials, 48(19), 2387–2399.CrossRefGoogle Scholar
  26. 26.
    Bishara, M., Rolfes, R., & Allix, O. (2017). Revealing complex aspects of compressive failure of polymer composites—Part I: Fiber kinking at microscale. Composite Structures, 169, 105–115. In Honor of Prof. Leissa.CrossRefGoogle Scholar
  27. 27.
    Waas, A. M., & Schultheisz, C. R. (1996). Compressive failure of composites, Part II: Experimental studies. Progress in Aerospace Sciences, 32(1), 43–78.CrossRefGoogle Scholar
  28. 28.
    Vogler, T. J., & Kyriakides, S. (1999). Inelastic behavior of an AS4/PEEK composite under combined transverse compression and shear. Part I: experiments. International Journal of Plasticity, 15(8), 783–806.CrossRefGoogle Scholar
  29. 29.
    Clarke, A. R., Archenhold, G., & Davidson, N. C. (1995). A novel technique for determining the 3D spatial distribution of glass fibres in polymer composites. Composites Science and Technology, 55(1), 75–91.CrossRefGoogle Scholar
  30. 30.
    Bednarcyk, B. A., Aboudi, J., & Arnold, S. M. (2014). The effect of general statistical fiber misalignment on predicted damage initiation in composites. Composites Part B: Engineering, 66, 97–108.CrossRefGoogle Scholar
  31. 31.
    Allix, O., Feld, N., Baranger, E., Guimard, J.-M., & Cuong, H.-M. (2014). The compressive behaviour of composites including fiber kinking: modelling across the scales. Meccanica, 49(11), 2571–2586.MathSciNetCrossRefGoogle Scholar
  32. 32.
    Cebon, D., & Newland, D. E. (1983). Artificial generation of road surface topography by the inverse FFT method. Vehicle System Dynamics, 12(1–3), 160–165.CrossRefGoogle Scholar
  33. 33.
    Newland, D. E. (1984). An introduction to random vibrations and spectral analysis. Mineola, New York: Dover Publications Inc.Google Scholar
  34. 34.
    Bažant, Z. P., Kim, J.-J. H., Daniel, I. M., Becq-Giraudon, E., & Zi, G. (1999). Size effect on compression strength of fiber composites failing by kink band propagation. International Journal of Fracture, 95(1), 103–141.CrossRefGoogle Scholar
  35. 35.
    Bažant, Z. P. (1999). Size effect on structural strength: A review. Archive of Applied Mechanics, 69(9), 703–725.zbMATHGoogle Scholar
  36. 36.
    Jacobs, T. D. B., Junge, T., & Pastewka, L. (2017). Quantitative characterization of surface topography using spectral analysis. Surface Topography: Metrology and Properties, 5(1), 013001.Google Scholar
  37. 37.
    Elfouhaily, T., Chapron, B., Katsaros, K., & Vandemark, D. (1997). A unified directional spectrum for long and short wind-driven waves. Journal of Geophysical Research: Oceans, 102(C7), 15781–15796.CrossRefGoogle Scholar
  38. 38.
    Kay, S., Hedley, J., Lavender, S., & Nimmo-Smith, A. (2011). Light transfer at the ocean surface modeled using high resolution sea surface realizations. Optics Express, 19(7), 6493–6504.CrossRefGoogle Scholar
  39. 39.
    Mobley, C. (2016). Ocean optics web book.Google Scholar
  40. 40.
    Vogler, M., Rolfes, R., & Camanho, P. P. (2013). Modeling the inelastic deformation and fracture of polymer composites—Part I: Plasticity model. Mechanics of Materials, 59, 50–64.CrossRefGoogle Scholar
  41. 41.
    ABAQUS/Standard User’s Manual, Version 6.16. Simulia, 2016.Google Scholar
  42. 42.
    Vogler, T. J., Hsu, S.-Y., & Kyriakides, S. (2000). Composite failure under combined compression and shear. International Journal of Solids and Structures, 37(12), 1765–1791.CrossRefGoogle Scholar
  43. 43.
    Basu, S., Waas, A. M., & Ambur, D. R. (2006). Compressive failure of fiber composites under multi-axial loading. Journal of the Mechanics and Physics of Solids, 54(3), 611–634.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Structural AnalysisLeibniz University HannoverHannoverGermany
  2. 2.ENS Paris-SaclayCachanFrance

Personalised recommendations