Advertisement

Isogeometric Multiscale Modeling with Galerkin and Collocation Methods

  • Milad Amin GhazianiEmail author
  • Josef Kiendl
  • Laura De Lorenzis
Chapter
  • 47 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 93)

Abstract

In this work we employ isogeometric analysis (IGA) in the field of computational homogenization. We present the nonlinear governing equations for the elasticity problem with finite deformations discretized with both IGA Galerkin and collocation methods in a nested multiscale problem and then explore the accuracy and computational performance of the proposed frameworks both in microscale and multiscale problems.

Notes

Acknowledgements

The authors appreciate the support of the German Research Foundation (DFG) within the International Research and Training Group IRTG 1627.

References

  1. 1.
    Cottrell, J., Hughes, T., & Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA. Wiley.Google Scholar
  2. 2.
    Schillinger, D., Hossain, S. J., & Hughes, T. J. R. (2014). Reduced Bezier element quadrature rules for quadratic and cubic splines in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 277, 1–45.MathSciNetCrossRefGoogle Scholar
  3. 3.
    Auricchio, F., Calabro, F., Hughes, T., Reali, A., & Sangalli, G. (2012). A simple algorithm for obtaining nearly optimal quadrature rules for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 249–252, 15–27.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Hughes, T., Reali, A., & Sangalli, G. (2010). Efficient quadrature for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 199(5–8), 301–313.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Adam, C., Hughes, T., Bouabdallah, S., Zarroug, M., & Maitournam, H. (2015). Selective and reduced numerical integrations for NURBS-based isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 284, 732–761.MathSciNetCrossRefGoogle Scholar
  6. 6.
    Hiemstra, R., Calabro, F., Schillinger, D., & Hughes, T. (2017). Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 316, 966–1004.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Fahrendorf, F., De Lorenzis, L., & Gomez, H. (2018). Reduced integration at superconvergent points in isogeometric analysis. Computer Methods in Applied Mechanics and Engineering, 328, 390–410.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Auricchio, F., Beirao da Veiga, L., Hughes, T. J. R., Reali, A., & Sangalli, G. (2010). Isogeometric collocation methods. Mathematical Models and Methods in Applied Sciences, 20(11), 1075–1077.MathSciNetCrossRefGoogle Scholar
  9. 9.
    Schillinger, D., Evans, J. A., Reali, A., Scott, M. A., & Hughes, T. (2013). Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations. Computer Methods in Applied Mechanics and Engineering, 267, 170–232.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Temizer, I. (2014). Multiscale thermomechanical contact: Computational homogenization with isogeometric analysis. International Journal for Numerical Methods in Engineering, 97, 582–607.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Alberdi, R., Zhang, G., & Khandelwal, K. (2018). A framework for implementation of RVE-based multiscale models in computational homogenization using isogeometric analysis. International Journal for Numerical Methods in Engineering, 114, 1018–1051.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Geers, M. G. D., Kouznetsova, V., & Brekelmans, W. A. M. (2010). Computational homogenization, multiscale modelling of plasticity and fracture by means of dislocation mechanics. CISM Courses and Lectures, 522, 327–394.Google Scholar
  13. 13.
    Feyel, F. D. R., & Chaboche, J.-L. (2000). \(\text{ FE }^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Computer Methods in Applied Mechanics and Engineering, 183, 309–330.CrossRefGoogle Scholar
  14. 14.
    Solinc, U., & Korelc, J. (2015). A simple way to improved formulation of \(\text{ FE }^2\) analysis. Computational Mechanics, 56(5), 905–915.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Somer, D. D., de Souza Neto, E. A., Dettmer, W. G., & Peric’, D. (2009). A sub-stepping scheme for multi-scale analysis of solids. Computer Methods in Applied Mechanics and Engineering, 198(9–12), 1006–1016.CrossRefGoogle Scholar
  16. 16.
    Otero, F., Martinez, X., Oller, S., & Salomon, O. (2015). An efficient multiscale method for non-linear analysis of composite structures. Composite Structures, 131, 707–719.CrossRefGoogle Scholar
  17. 17.
    Hill, R. (1972). On constitutive macro-variables for heterogeneous solids at finite strain. Proceedings of the Royal Society of London. Series A, 326(1565), 131–147.zbMATHGoogle Scholar
  18. 18.
    Mandel, J. (1972). Plasticite classique, Viscoplasticite (CISM courses and lectures) (Vol. 97). New York: Springer.Google Scholar
  19. 19.
    Saeb, S., Javili, A., & Steinmann, P. (2016). Aspects of computational homogenization at finite deformations: A unifying review from Reuss’ to Voigt’s bound. In Applied mechanics reviews.Google Scholar
  20. 20.
    Auricchio, F., Beirao da Veiga, L., Hughes, T. J. R., Reali, A., & Sangalli, G. (2014). Isogeometric collocation for elastostatics and explicit dynamics. Computer Methods in Applied Mechanics and Engineering, 14(2), 249–252.zbMATHGoogle Scholar
  21. 21.
    Kruse, R., Nguyen-Thanh, N., De Lorenzis, L., & Hughes, T. J. R. (2015). Isogeometric collocation for large deformation elasticity and frictionalcontact problems. Computer Methods in Applied Mechanics and Engineering, 296, 73–112.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Simo, J. C., & Pister, K. S. (1984). Remarks on rate constitutive equations for finite deformation. Computer Methods in Applied Mechanics and Engineering, 46, 201–215.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Milad Amin Ghaziani
    • 1
    Email author
  • Josef Kiendl
    • 2
  • Laura De Lorenzis
    • 1
  1. 1.Institute for Applied MechanicsBraunschweigGermany
  2. 2.Department of Marine TechnologyMarinteknisk senterTrondheimNorway

Personalised recommendations