Advertisement

Treatment of Brittle Fracture in Solids with the Virtual Element Method

  • A. HusseinEmail author
  • P. Wriggers
  • B. Hudobivnik
  • F. Aldakheel
  • P.-A. Guidault
  • O. Allix
Chapter
  • 41 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 93)

Abstract

Computational Mechanics has many applications in engineering. Its range of application has been enlarged widely in the last decades. Still new developments are made to which a new discretization scheme belongs: the virtual element method (VEM). Despite being only few years under development the application range of VEM in engineering includes formulations for linear and nonlinear material responses. In this contribution the focus is on fracture mechanics. Especially the treatment of crack propagation will be discussed where VEM has some advantages. The performance of the formulation is underlined by means of representative examples.

References

  1. 1.
    Zienkiewicz, O. C., Taylor, R., & Zhu, J. Z. (2005). The finite element method: Its basis and fundamentals. Elsevier.Google Scholar
  2. 2.
    Wriggers, P. (2008). Nonlinear finite elements. Berlin, Heidelberg, New York: Springer.zbMATHGoogle Scholar
  3. 3.
    Cottrell, J. A., Hughes, T. J. R., & Bazilevs, Y. (2009). Isogeometric analysis: Toward integration of CAD and FEA. Wiley.Google Scholar
  4. 4.
    Beirão Da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini, L. D., & Russo, A. (2013). Basic principles of virtual element methods. Mathematical Models and Methods in Applied Sciences, 23(1), 199–214.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Brezzi, F., Buffa, A., & Lipnikov, K. (2009). Mimetic finite differences for elliptic problems. ESAIM: Mathematical Modelling and Numerical Analysis, 43(2), 277–295.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Cangiani, A., Manzini, G., Russo, A., & Sukumar, N. (2015). Hourglass stabilization and the virtual element method. International Journal for Numerical Methods in Engineering, 102(3–4), 404–436.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Gain, A. L., Talischi, C., & Paulino, G. H. (2014). On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral meshes. Computer Methods in Applied Mechanics and Engineering, 282, 132–160.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Wriggers, P., Rust, W. T., & Reddy, B. D. (2016). A virtual element method for contact. Computational Mechanics, 58(6), 1039–1050.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Benedetto, M. F., Berrone, S., & Scialó, S. (2016). A globally conforming method for solving flow in discrete fracture networks using the virtual element method. Finite Elements in Analysis and Design, 109, 23–36.CrossRefGoogle Scholar
  10. 10.
    Hussein, A., Hudobivnik, B., Aldakheel, F., Wriggers, P., Guidault, P. A., & Allix, O. (2018). A virtual element method for crack propagation. PAMM, 18(1), 1–2.CrossRefGoogle Scholar
  11. 11.
    Nguyen-Thanh, V. M., Zhuang, X., Nguyen-Xuan, H., Rabczuk, T., & Wriggers, P. (2018). A virtual element method for 2D linear elastic fracture analysis. Computer Methods in Applied Mechanics and Engineering, 340, 366–395.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hussein, A., Hudobivnik, B., Aldakheel, F., Wriggers, P., Guidault, P. A., & Allix, O. (2019). A computational framework for brittle crack propagation based on an efficient virtual element method. In Finite elements in analysis and design.Google Scholar
  13. 13.
    De Bellis, M. L., Wriggers, P., Hudobivnik, B., & Zavarise, G. (2018). Virtual element formulation for isotropic damage. Finite Elements in Analysis and Design, 144, 38–48.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Aldakheel, F., Hudobivnik, B., Hussein, A., & Wriggers, P. (2018). Phase-field modeling of brittle fracture using an efficient virtual element scheme. Computer Methods in Applied Mechanics and Engineering, 341, 443–466.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Belytschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. International Journal for Numerical Methods in Engineering, 37(2), 229–256.MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Fleming, M., Chu, Y. A., Moran, B., & Belytschko, T. (1998). Enriched element-free Galerkin methods for crack tip fields. International Journal for Numerical Methods in Engineering, 40(8), 1483–1504.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ingraffea, A. R., Blandford, G. E., Liggett, J. A. (1983). Automatic modelling of mixed-mode fatigue and quasi-static crack propagation using the boundary element method. In Fracture Mechanics: Fourteenth Symposium Volume I: Theory and Analysis. ASTM International.Google Scholar
  18. 18.
    Portela, A., Aliabadi, M. H., & Rooke, D. P. (1992). The dual boundary element method: Effective implementation for crack problems. International Journal for Numerical Methods in Engineering, 33(6), 1269–1287.zbMATHCrossRefGoogle Scholar
  19. 19.
    Belytschko, T., & Black, T. (1999). Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering, 45(5), 601–620.zbMATHCrossRefGoogle Scholar
  20. 20.
    Sukumar, N., & Prévost, J. H. (2003). Modeling quasi-static crack growth with the extended finite element method part I: Computer implementation. International Journal of Solids and Structures, 40(26), 7513–7537.zbMATHCrossRefGoogle Scholar
  21. 21.
    Chan, S. K., Tuba, I. S., & Wilson, W. K. (1970). On the finite element method in linear fracture mechanics. Engineering Fracture Mechanics, 2(1), 1–17.CrossRefGoogle Scholar
  22. 22.
    Paris, P. C., & Sih, G. C. (1965). Stress analysis of cracks. In Fracture toughness testing and its applications. ASTM International.Google Scholar
  23. 23.
    Hellen, T. K. (1975). On the method of virtual crack extensions. International Journal for Numerical Methods in Engineering, 9(1), 187–207.MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Rice, J. R., & Rosengren, G. F. (1968). Plane strain deformation near a crack tip in a power-law hardening material. Journal of the Mechanics and Physics of Solids, 16(1), 1–12.zbMATHCrossRefGoogle Scholar
  25. 25.
    Eshelby, J. D. (1974). The calculation of energy release rates. In Prospects of fracture mechanics, pp. 69–84.Google Scholar
  26. 26.
    Yau, J. F., Wang, S. S., & Corten, H. T. (1980a). A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics, 47(2), 335–341.zbMATHCrossRefGoogle Scholar
  27. 27.
    Barsoum, R. S. (1974). Application of quadratic isoparametric finite elements in linear fracture mechanics. International Journal of Fracture, 10(4), 603–605.CrossRefGoogle Scholar
  28. 28.
    Henshell, R. D., & Shaw, K. G. (1975). Crack tip finite elements are unnecessary. International Journal for Numerical Methods in Engineering, 9(3), 495–507.zbMATHCrossRefGoogle Scholar
  29. 29.
    Tong, P., Pian, T. H. H., & Lasry, S. J. (1973). A hybrid-element approach to crack problems in plane elasticity. International Journal for Numerical Methods in Engineering, 7(3), 297–308.zbMATHCrossRefGoogle Scholar
  30. 30.
    Karihaloo, B. L., & Xiao, Q. Z. (2001). Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity. Engineering Fracture Mechanics, 68(15), 1609–1630.CrossRefGoogle Scholar
  31. 31.
    Miehe, C., Welschinger, F., & Hofacker, M. (2010). Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations. International Journal for Numerical Methods in Engineering, 83, 1273–1311.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Borden, M. J., Verhoosel, C. V., Scott, M. A., Hughes, T. J. R., & Landis, C. M. (2012). A phase-field description of dynamic brittle fracture. Computer Methods in Applied Mechanics and Engineering, 217–220, 77–95.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Verhoosel, C. V., & de Borst, R. (2013). A phase-field model for cohesive fracture. International Journal for Numerical Methods in Engineering, 96, 43–62.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Hesch, C., & Weinberg, K. (2014). Thermodynamically consistent algorithms for a finite-deformation phase-field approach to fracture. International Journal for Numerical Methods in Engineering, 99, 906–924.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Kuhn, C., Schlüter, A., & Müller, R. (2015). On degradation functions in phase field fracture models. Computational Materials Science, 108, 374–384.CrossRefGoogle Scholar
  36. 36.
    Sargado, J. M., Keilegavlen, E., Berre, I., Nordbotten, J. M. (2017). High-accuracy phase-field models for brittle fracture based on a new family of degradation functions. Journal of the Mechanics and Physics of Solids, 2017. ISSN 0022-5096.Google Scholar
  37. 37.
    Ambati, M., Gerasimov, T., & De Lorenzis, L. (2015). A review on phase-field models of brittle fracture and a new fast hybrid formulation. Computational Mechanics, 55(2), 383–405.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Zhang, X., Vignes, C., Sloan, S. W., & Sheng, D. (2017). Numerical evaluation of the phase-field model for brittle fracture with emphasis on the length scale. Computational Mechanics, 59(5), 737–752.MathSciNetCrossRefGoogle Scholar
  39. 39.
    Heider, Y., & Markert, B. (2017). A phase-field modeling approach of hydraulic fracture in saturated porous media. Mechanics Research Communications, 80, 38–46.CrossRefGoogle Scholar
  40. 40.
    Ehlers, W., & Luo, C. (2017). A phase-field approach embedded in the theory of porous media for the description of dynamic hydraulic fracturing. Computer Methods in Applied Mechanics and Engineering, 315, 348–368.MathSciNetCrossRefGoogle Scholar
  41. 41.
    Alessi, R., Vidoli, S., De Lorenzis, L. (2017). A phenomenological approach to fatigue with a variational phase-field model: The one-dimensional case. In Engineering fracture mechanics, 2017. ISSN 0013-7944. http://www.sciencedirect.com/science/article/pii/S0013794417308469,  https://doi.org/10.1016/j.engfracmech.2017.11.036.
  42. 42.
    Paggi, M., & Reinoso, J. (2017). Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model. Computer Methods in Applied Mechanics and Engineering, 321, 145–172.MathSciNetCrossRefGoogle Scholar
  43. 43.
    Kakouris, E. G., & Triantafyllou, S. P. (2017). Phase-field material point method for brittle fracture. International Journal for Numerical Methods in Engineering, 112(12), 1750–1776.MathSciNetCrossRefGoogle Scholar
  44. 44.
    Rice, J. R. (1968). A path independent integral and the approximate analysis of strain concentration by notches and cracks. Journal of Applied Mechanics, 35(2), 379–386.CrossRefGoogle Scholar
  45. 45.
    Yau, J. F., Wang, S. S., & Corten, H. T. (1980b). A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity. Journal of Applied Mechanics, 47(2), 335.zbMATHCrossRefGoogle Scholar
  46. 46.
    Williams, M. L. (1956). On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics, 24, 109–114.MathSciNetGoogle Scholar
  47. 47.
    Moës, N., Dolbow, J., & Belytschko, T. (1999). A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering, 46(1), 131–150.MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Nuismer, R. J. (1975). An energy release rate criterion for mixed mode fracture. International Journal of Fracture, 11(2), 245–250. Apr.CrossRefGoogle Scholar
  49. 49.
    Francfort, G. A., & Marigo, J.-J. (1998). Revisiting brittle fracture as an energy minimization problem. Journal of the Mechanics and Physics of Solids, 46(8), 1319–1342.MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Miehe, C., Hofacker, M., Schänzel, L.-M., & Aldakheel, F. (2015). Phase field modeling of fracture in multi-physics problems. Part II. Brittle-to-ductile failure mode transition and crack propagation in thermo-elastic-plastic solids. Computer Methods in Applied Mechanics and Engineering, 294, 486–522.MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Korelc, J., & Wriggers, P. (2016). Automation of finite element methods. Springer. ISBN 978-3-319-39005-5.  https://doi.org/10.1007/978-3-319-39005-5.
  52. 52.
    Wriggers, P., Reddy, B. D., Rust, W., & Hudobivnik, B. (2017). Efficient virtual element formulations for compressible and incompressible finite deformations. Computational Mechanics, 60(2), 253–268.MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wriggers, P., & Hudobivnik, B. (2017). A low order virtual element formulation for finite elasto-plastic deformations. Computer Methods in Applied Mechanics and Engineering, 327, 459–477.MathSciNetCrossRefGoogle Scholar
  54. 54.
    Flanagan, D., & Belytschko, T. (1981). A uniform strain hexahedron and quadrilateral with orthogonal hour-glass control. International Journal for Numerical Methods in Engineering, 17, 679–706.zbMATHCrossRefGoogle Scholar
  55. 55.
    Belytschko, T., & Bindeman, L. P. (1991). Assumed strain stabilization of the 4-node quadrilateral with 1-point quadrature for nonlinear problems. Computer Methods in Applied Mechanics and Engineering, 88(3), 311–340.MathSciNetzbMATHCrossRefGoogle Scholar
  56. 56.
    Reese, S., Kuessner, M., & Reddy, B. D. (1999). A new stabilization technique to avoid hourglassing in finite elasticity. International Journal for Numerical Methods in Engineering, 44, 1617–1652.MathSciNetCrossRefGoogle Scholar
  57. 57.
    Reese, S., & Wriggers, P. (2000). A new stabilization concept for finite elements in large deformation problems. International Journal for Numerical Methods in Engineering, 48, 79–110.zbMATHCrossRefGoogle Scholar
  58. 58.
    Mueller-Hoeppe, D. S., Loehnert, S., & Wriggers, P. (2009). A finite deformation brick element with inhomogeneous mode enhancement. International Journal for Numerical Methods in Engineering, 78, 1164–1187.MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Korelc, J., Solinc, U., & Wriggers, P. (2010). An improved EAS brick element for finite deformation. Computational Mechanics, 46, 641–659.zbMATHCrossRefGoogle Scholar
  60. 60.
    Krysl, P. (2015). Mean-strain eight-node hexahedron with stabilization by energy sampling stabilization. International Journal for Numerical Methods in Engineering, 103, 437–449.MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Miehe, C., Gürses, E., & Birkle, M. (2007). A computational framework of configurational-force-driven brittle fracture based on incremental energy minimization. International Journal of Fracture, 145(4), 245–259.zbMATHCrossRefGoogle Scholar
  62. 62.
    Erdogan, F., & Sih, G. C. (1963). On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering, 85(4), 519–525.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • A. Hussein
    • 1
    Email author
  • P. Wriggers
    • 1
  • B. Hudobivnik
    • 1
  • F. Aldakheel
    • 1
  • P.-A. Guidault
    • 2
  • O. Allix
    • 2
  1. 1.Institute of Continuum Mechanics, Leibniz Universität HannoverHannoverGermany
  2. 2.LMT, ENS Paris-Saclay/CNRS/Université Paris-SaclayCachan CedexFrance

Personalised recommendations