Phenotype, Niche Construction, and Natural Cellular Engineering

  • John Torday
  • William Miller Jr.


The conventional view of phenotype is that it is an epiphenomenon directly driven by selection. Instead, in a modern context based on the primacy of the unicellular form, phenotype can be re-appraised as a means toward obtaining contemporaneous genetic marks (Torday and Miller 2016c). When the evolutionary imperative is appropriately understood as the strategic derivation of epigenetic marks from the environment and their appropriate assortment through the EUC, its evolutionary meaning shifts away from the natural assumption that its impact necessarily relates to the direct survival advantage of the offspring (Wang et al. 2017). In part, this reflects that epigenetic effects need not be immediately apparent. Although the actual identity of the mechanism that determines the distribution of the epigenetic marks from germ cells to somatic cells is not completely known, it is clear that the unicellular recapitulation is the dominant governing phase, with further adjustments during embryogenesis (Gapp and Bohacek 2018; Wang et al. 2017). In this context, pleiotropy (the production by a single gene of two or more apparently unrelated effects) (Williams 1957), heterochrony (the developmental change in the timing or rate of events, leading to changes in size and shape of organisms) (Torday 2016a), and neoteny (the retention of juvenile features in the adult organism) (Skulachev et al. 2017; Godfrey and Sutherland 1996) can each be understood as mechanisms through which epigenetic inheritance might be governed.


Phenotype Epigenome Transgenerational epigenetic effects Niche construction Self-organization Stigmergy Natural genetic engineering Infectious interchange Genomes Transposable elements Natural cellular engineering 


  1. Baluška F, Mancuso S (2009) Deep evolutionary origins of neurobiology: turning the essence of ‘neural’ upside-down. Commun Integr Biol 2:60–65CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ben-Jacob E (2009) Learning from bacteria about natural information processing. Ann N Y Acad Sci 1178:78–90PubMedPubMedCentralGoogle Scholar
  3. Ben-Jacob E, Levine H (2006) Self-engineering capabilities of bacteria. J R Soc Interface 3:197–214CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bird A (2007) Perceptions of epigenetics. Nature 447:396–398CrossRefPubMedPubMedCentralGoogle Scholar
  6. Black SG, Arnaud F, Palmarini M, Spencer TE (2010) Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol 64:255–264CrossRefPubMedPubMedCentralGoogle Scholar
  7. Caporale LH (2003) Darwin in the genome: molecular strategies in biological evolution. McGraw-Hill, New YorkGoogle Scholar
  8. Caporale LH, Doyle J (2013) In Darwinian evolution, feedback from natural selection leads to biased mutations. Ann N Y Acad Sci 1305:18–28CrossRefPubMedPubMedCentralGoogle Scholar
  9. Colson P, Ravaux I, Tamalet C, Glazunova O, Baptiste E, Chabriere E, Wiedemann A, Lacabaratz C, Chefrour M, Picard C (2014) HIV infection en route to endogenization: two cases. Clin Microbiol Infect 20:1280–1288CrossRefPubMedPubMedCentralGoogle Scholar
  10. Danchin É, Charmantier A, Champagne FA, Mesoudi A, Pujol B, Blanchet S (2011) Beyond DNA: integrating inclusive inheritance into an extended theory of evolution. Nat Rev Genet 12:475–486CrossRefPubMedPubMedCentralGoogle Scholar
  11. Fedoroff NV (2012) Transposable elements, epigenetics, and genome evolution. Science 338:758–767CrossRefPubMedPubMedCentralGoogle Scholar
  12. Forterre P (2011) Manipulation of cellular syntheses and the nature of viruses: the virocell concept. C R Chim 14:392–399CrossRefGoogle Scholar
  13. Fraser P, Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447:413–417CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gapp K, Bohacek J (2018) Epigenetic germline inheritance in mammals: looking to the past to understand the future. Genes Brain Behav 17:e12407CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gifford WD, Pfaff SL, Macfarlan TS (2013) Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol 23:218–226CrossRefPubMedPubMedCentralGoogle Scholar
  16. Godfrey LR, Sutherland MR (1996) Paradox of peramorphic paedomorphosis: heterochrony and human evolution. Am J Phys Anthropol 99:17–42CrossRefGoogle Scholar
  17. Heylighen F (2001) The science of self-organization and adaptivity. Encycl Life Support Syst 5:253–280Google Scholar
  18. Heylighen F (2015) Stigmergy as a universal coordination mechanism: components, varieties and applications. In: Lewis T, Marsh L (eds) Human stigmergy: theoretical developments and new applications. Springer, New YorkGoogle Scholar
  19. Jablonka E, Lamb MJ (1999) Epigenetic inheritance and evolution: the Lamarckian dimension. Oxford University Press, OxfordGoogle Scholar
  20. Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106CrossRefPubMedPubMedCentralGoogle Scholar
  21. Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, Yabuuchi A, Takeuchi A, Cunniff KC, Hongguang H, McKinney-Freeman S, Naveiras O, Yoon TJ, Irizarry RA, Jung N, Seita J, Hanna J, Murakami P, Jaenisch R, Weissleder R, Orkin SH, Weissman IL, Feinberg AP, Daley GQ (2010) Epigenetic memory in induced pluripotent stem cells. Nature 467:285–290CrossRefPubMedPubMedCentralGoogle Scholar
  23. Koonin EV, Wolf YI (2009) Is evolution Darwinian or/and Lamarckian? Biol Direct 4:42CrossRefPubMedPubMedCentralGoogle Scholar
  24. Laland KN, Sterelny K, Odling-Smee J, Hoppitt W, Uller T (2011) Cause and effect in biology revisited: is Mayr’s proximate-ultimate dichotomy still useful? Science 334:1512–1516CrossRefGoogle Scholar
  25. Laland KN, Uller T, Feldman MW, Sterelny K, Müller GB, Moczek A, Jablonka E, Odling-Smee J (2015) The extended evolutionary synthesis: its structure, assumptions and predictions. Proc R Soc B 282:20151019PubMedCrossRefGoogle Scholar
  26. Lamm E (2014) The genome as a developmental organ. J Physiol 592:2283–2293CrossRefPubMedPubMedCentralGoogle Scholar
  27. McClintock B (1993) The significance of responses of the genome to challenge. Science 226:792–801CrossRefGoogle Scholar
  28. Meaney MJ (2010) Epigenetics and the biological definition of gene× environment interactions. Child Dev 81:41–79CrossRefPubMedPubMedCentralGoogle Scholar
  29. Merhej V, Raoult D (2012) Rhizome of life, catastrophes, sequence exchanges, gene creations, and giant viruses: how microbial genomics challenges Darwin. Front Cell Infect Microbiol 2:113CrossRefPubMedPubMedCentralGoogle Scholar
  30. Miller WB (2013) The microcosm within: evolution and extinction in the hologenome. Universal Publishers, Boca RatonGoogle Scholar
  31. Miller WB (2016a) Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel) 5(2):21Google Scholar
  32. Miller WB (2016b) The eukaryotic microbiome: origins and implications for fetal and neonatal life. Front Pediatr 4:96CrossRefPubMedPubMedCentralGoogle Scholar
  33. Miller WB (2017) Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol 134:1–36CrossRefPubMedPubMedCentralGoogle Scholar
  34. Miller WB Jr, Torday JS (2018) Four domains: the fundamental unicell and Post-Darwinian cognition-based evolution. Prog Biophys Mol Biol 140:49–73PubMedCrossRefGoogle Scholar
  35. Miller WB Jr, Torday JS (2019) Reappraising the exteriorization of the mammalian testes through evolutionary physiology. Commun Integr Biol 12:38–54PubMedPubMedCentralGoogle Scholar
  36. Miller WB Jr, Torday JS, Baluška F (2019) Biological evolution as defense of ‘self’. Prog Biophys Mol Biol 142:54–74CrossRefPubMedPubMedCentralGoogle Scholar
  37. Miller WB, Torday JS (2017) A systematic approach to cancer: evolution beyond selection. Clin Transl Med 3:2Google Scholar
  38. Mita P, Boeke JD (2016) How retrotransposons shape genome regulation. Curr Opin Genet 37:90–100CrossRefGoogle Scholar
  39. Odling-Smee FJ, Laland KN, Feldman MW (2003) Niche construction: the neglected process in evolution. Princeton University Press, PrincetonGoogle Scholar
  40. Oliver KR, Greene WK (2009) Transposable elements: powerful facilitators of evolution. BioEssays 31:703–714CrossRefPubMedPubMedCentralGoogle Scholar
  41. Oliver KR, Greene WK (2012) Transposable elements and viruses as factors in adaptation and evolution: an expansion and strengthening of the TE-Thrust hypothesis. Ecol Evol 2:2912–2933CrossRefPubMedPubMedCentralGoogle Scholar
  42. Robbez-Masson L, Rowe HM (2015) Retrotransposons shape species-specific embryonic stem cell gene expression. Retrovirology 12:45–57CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ryan FP (2004) Human endogenous retroviruses in health and disease: a symbiotic perspective. J R Soc Med 97:560–565CrossRefPubMedPubMedCentralGoogle Scholar
  44. Ryan FP (2009) Virolution. Harper Collins Publishers, LondonGoogle Scholar
  45. Schlesinger S, Goff SP (2015) Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol Gen Genet 35:770–777Google Scholar
  46. Schrader L, Kim JW, Ence D, Zimin A, Klein A, Wyschetzki K, Weichselgartner T, Kemena C, Stökl J, Schultner E, Wurm Y, (2014) Transposable element islands facilitate adaptation to novel environments in an invasive species. Nat. Commun. 5, 5495Google Scholar
  47. Shapiro JA (2011) Evolution: a view from the 21st century. FT Press, Upper Saddle RiverGoogle Scholar
  48. Shapiro JA (2016a) The basic concept of the read–write genome: mini-review on cell-mediated DNA modification. Biosystems 140:35–37CrossRefPubMedPubMedCentralGoogle Scholar
  49. Shapiro JA (2016b) Nothing in evolution makes sense except in the light of genomics: read–write genome evolution as an active biological process. Biology 5(2):E27CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shapiro JA (2017a) Biological action in read–write genome evolution. Interface Focus 7:20160115PubMedPubMedCentralGoogle Scholar
  51. Shapiro JA (2017b) Exploring the read-write genome: mobile DNA and mammalian adaptation. Crit Rev Biochem Mol Biol 52:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  52. Shapiro JA (2017c) Living organisms author their read-write genomes in evolution. Biology 6(4):E42CrossRefPubMedPubMedCentralGoogle Scholar
  53. Sharma U, Sun F, Reichholf B, Herzog V, Ameres S, Rando O (2017) Small RNAs are trafficked from the epididymis to developing mammalian sperm. Dev Cell 46:481–494CrossRefGoogle Scholar
  54. Skinner M (2015) Environmental epigenetics and a unified theory of the molecular aspects of evolution: a Neo-Lamarckian concept that facilitates Neo-Darwinian evolution. Genome Biol Evol 7:1296–1302CrossRefPubMedPubMedCentralGoogle Scholar
  55. Skulachev VP, Holtze S, Vyssokikh MY, Bakeeva LE, Skulachev MV, Markov AV, Hildebrandt TB, Sadovnichii VA (2017) Neoteny, prolongation of youth: from naked mole rats to “naked apes” (humans). Physiol Rev 97:699–720CrossRefPubMedPubMedCentralGoogle Scholar
  56. Stotz K (2017) Why developmental niche construction is not selective niche construction: and why it matters. Interface Focus 7:20160157CrossRefPubMedPubMedCentralGoogle Scholar
  57. Tarlinton RE, Meers J, Young PR (2006) Retroviral invasion of the koala genome. Nature 442:79–81CrossRefPubMedPubMedCentralGoogle Scholar
  58. Theraulaz G, Bonabeau E (1999) A brief history of stigmergy. Artif Life 5:97–116CrossRefPubMedPubMedCentralGoogle Scholar
  59. Torday JS (2015a) The cell as the mechanistic basis for evolution. WIREs Syst Biol Med 7:275–284Google Scholar
  60. Torday JS (2015b) A central theory of biology. Med Hypotheses 85:49–57PubMedPubMedCentralGoogle Scholar
  61. Torday JS (2016a) Heterochrony as diachronically modified cell-cell interactions. Biology (Basel) 5(1):4Google Scholar
  62. Torday JS (2016b) The cell as the first niche construction. Biology (Basel) 5(2):19Google Scholar
  63. Torday JS (2016c) Life is simple-biologic complexity is an epiphenomenon. Biology (Basel) 5(2):17Google Scholar
  64. Torday JS, Miller WB Jr (2016a) The unicellular state as a point source in a quantum biological system. Biology (Basel) 5(2):25Google Scholar
  65. Torday JS, Miller WB Jr (2016b) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34CrossRefPubMedPubMedCentralGoogle Scholar
  66. Torday JS, Miller WB Jr (2016c) Life is determined by its environment. Int J Astrobiol 15:345–350CrossRefPubMedPubMedCentralGoogle Scholar
  67. Torday JS, Miller WB Jr (2016e) On the evolution of the mammalian brain. Front Syst Neurosci 10:1–9CrossRefGoogle Scholar
  68. Torday JS, Miller WB Jr (2018a) The cosmologic continuum from physics to consciousness. Prog Biophys Mol Biol 140:41–48CrossRefGoogle Scholar
  69. Torday JS, Miller WB Jr (2018b) A systems approach to physiologic evolution: from micelles to consciousness. J Cell Physiol 233:162–167CrossRefGoogle Scholar
  70. Villarreal LP (1997) On viruses, sex, and motherhood. J Virol 71:859–865CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein. Proc Natl Acad Sci 104:18613–18618CrossRefPubMedPubMedCentralGoogle Scholar
  72. Wang Y, Liu H, Sun Z (2017) Lamarck rises from his grave: parental environment-induced epigenetic inheritance in model organisms and humans. Biol Rev Camb Philos Soc 92:2084–2111CrossRefPubMedPubMedCentralGoogle Scholar
  73. Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411CrossRefGoogle Scholar
  74. Witzany G (2009) Noncoding RNAs: persistent viral agents as modular tools for cellular needs. Ann N Y Acad Sci 1178:244–267CrossRefPubMedPubMedCentralGoogle Scholar
  75. Witzany G (2010) Biocommunication and natural genome editing. World J Biol Chem 1:348PubMedPubMedCentralGoogle Scholar
  76. Witzany G (2011) The agents of natural genome editing. J Mol Cell Biol 3:181–189CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • John Torday
    • 1
  • William Miller Jr.
    • 2
  1. 1.Deptartment of Pediatrics, Obstetrics and GynecologyHarbor–UCLA Medical CenterTorranceUSA
  2. 2.Physician/Independent researcherBanner Health/J.C.Lincoln Health SystemsParadise ValleyUSA

Personalised recommendations