Fabrication of Nanostructured Materials with Rare-Earth Elements for Bioanalytical Applications

  • Suresh Kumar KailasaEmail author
  • Janardhan Reddy Koduru
  • Thriveni Thenepalli


The use of rare-earth element-based nanomaterials plays an essential role in biomedical applications due to their luminescent (upconversion, downconversion, and permanent luminescence), magnetic properties, and absorption ability of X-rays. Rare-earth elements have been widely used for the fabrication of nanomaterials that are shown attractive properties including absence of blinking, high photostability, large Stokes shifts, extremely narrow emission lines, and long lifetimes, respectively. This book chapter explores the recent applications of rare-earth element-based nanomaterials for the detection of various biomolecules in various biofluids.


Rare-earth-based nanomaterials Fluorescence spectroscopy Electron microscopy Biosensing 



SKK acknowledges the Department of Science and Technology, Government of India (EMR/2016/002621/IPC), for financial support.


  1. Bouzigues, C., Gacoin, T., & Alexandrou, A. (2011). Biological applications of rare-earth based nanoparticles. ACS Nano, 5, 8488–8505.CrossRefGoogle Scholar
  2. Chen, D., & Wang, Y. (2013). Impurity doping: A novel strategy for controllable synthesis of functional lanthanide nanomaterials. Nanoscale, 5, 4621–4637.CrossRefGoogle Scholar
  3. Chen, H., Guan, Y., Wang, S., Ji, Y., Gong, M., & Wang, L. (2014). Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods. Langmuir, 30, 13085–13091.CrossRefGoogle Scholar
  4. Cheng, K., Zhang, J., Zhang, L., Wang, L., & Chen, H. (2017). Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn2+-doped NaYF4:Yb, Tm upconverting nanoparticles to gold nanorods. Spectrochimica Acta A, 171, 168–173.CrossRefGoogle Scholar
  5. Dai, S., Wu, S., Duan, N., & Wang, Z. (2016). A luminescence resonance energy transfer based aptasensor for the mycotoxin ochratoxin A using upconversion nanoparticles and gold nanorods. Microchimica Acta, 183, 1909–1916.CrossRefGoogle Scholar
  6. Desai, M. L., Jha, S., Basu, H., Singhal, R. K., Sharma, P. K., & Kailasa, S. K. (2018). Microwave-assisted synthesis of water-soluble Eu3+ hybrid carbon dots with enhanced fluorescence for the sensing of Hg2+ ions and imaging of fungal cells. New Journal of Chemistry, 42, 6125–6133.CrossRefGoogle Scholar
  7. Dong, L., Yang, Z., Zhang, Y., Zhu, Y., Wang, L., & Wang, L. (2010). Novel luminescent nanoparticles for DNA detection. Spectrochimica Acta A, 75(5), 1530–1534.CrossRefGoogle Scholar
  8. Duan, N., Wu, S., Zhu, C., et al. (2012). Dual-color upconversion fluorescence and aptamer-functionalized magnetic nanoparticles-based bioassay for the simultaneous detection of Salmonella typhimurium and Staphylococcus aureus. Analytica Chimica Acta, 723, 1–6.CrossRefGoogle Scholar
  9. Escudero, A., Becerro, A. I., Carrillo-Carrión, C., Núñez, N. O., Zyuzin, M. V., Laguna, M., González-Mancebo, D., Ocaña, M., & Parak, W. J. (2017). Rare earth based nanostructured materials: Synthesis, functionalization, properties and bioimaging and biosensing applications. Nano, 6(5), 881–921.Google Scholar
  10. Farka, Z., Mickert, M. J., Hlaváček, A., Skládal, P., & Gorris, H. H. (2017). Single molecule upconversion-linked immunosorbent assay with extended dynamic range for the sensitive detection of diagnostic biomarkers. Analytical Chemistry, 89, 11825–11830.CrossRefGoogle Scholar
  11. Haase, M., & Schäfer, H. (2011). Upconverting nanoparticles. Angewandte Chemie International Edition, 50, 5808–5829.CrossRefGoogle Scholar
  12. He, M., Li, Z., Ge, Y., & Liu, Z. (2016). Portable upconversion nanoparticles-based paper device for field testing of drug abuse. Analytical Chemistry, 88, 1530–1534.CrossRefGoogle Scholar
  13. Jiang, P., He, M., Shen, L., Shi, A., & Liu, Z. (2017). A paper-supported aptasensor for total IgE based on luminescence resonance energy transfer from upconversion nanoparticles to carbon nanoparticles. Sensors and Actuators B: Chemical, 239, 319–324.CrossRefGoogle Scholar
  14. Jin, B., Wang, S., Lin, M., Jin, Y., Zhang, S., Cui, X., Gong, Y., Li, A., Xu, F., & Lu, T. J. (2017). Upconversion nanoparticles based FRET aptasensor for rapid and ultrasenstive bacteria detection. Biosensors & Bioelectronics, 90, 525–533.CrossRefGoogle Scholar
  15. Jo, E.-J., Mun, H., & Kim, M.-G. (2016). Homogeneous immunosensor based on luminescence resonance energy transfer for glycated hemoglobin detection using upconversion nanoparticles. Analytical Chemistry, 88, 2742–2746.CrossRefGoogle Scholar
  16. Kim, J., Kwon, J. H., Jang, J., Lee, H., Kim, S., Hahn, Y. K., Kim, S. K., Lee, K. H., Lee, S., Pyo, H., Song, C. S., & Lee, J. (2018). Rapid and background-free detection of avian influenza virus in opaque sample using NIR-to-NIR upconversion nanoparticle-based lateral flow immunoassay platform. Biosensors & Bioelectronics, 112, 209–215.CrossRefGoogle Scholar
  17. Kuningas, K., Rantanen, T., Karhunen, U., Lövgren, T., & Soukka, T. (2005). Simultaneous use of time-resolved fluorescence and anti- stokes photoluminescence in a bioaffinity assay. Analytical Chemistry, 77, 2826–2834.CrossRefGoogle Scholar
  18. Li, A., Zhao, H., Jin, L., & Zheng, D. (2006). Nucleic acids analysis with nano-Ag-Tb(III) by a resonance light scattering technique. Analytical Sciences, 22(5), 775–779.CrossRefGoogle Scholar
  19. Li, X., Wei, L., Pan, L., Yi, Z., Wang, X., Ye, Z., Xiao, L., Li, H. W., & Wang, J. (2018). Homogeneous immunosorbent assay based on single-particle enumeration using upconversion nanoparticles for the sensitive detection of cancer biomarkers. Analytical Chemistry, 90, 4807–4814.CrossRefGoogle Scholar
  20. Liang, Z., Wang, X., Zhu, W., Zhang, P., Yang, Y., Sun, C., Zhang, J., Wang, X., Xu, Z., Zhao, Y., Yang, R., Zhao, S., & Zhou, L. (2017). Upconversion nanocrystals mediated lateral-flow nanoplatform for in vitro detection. ACS Applied Materials & Interfaces, 9, 3497–3504.CrossRefGoogle Scholar
  21. Liu, Y., Jia, Q., Guo, Q., Jiang, A., & Zhou, J. (2017). In vivo oxidative stress monitoring through intracellular hydroxyl radicals detection by recyclable upconversion nanoprobes. Analytical Chemistry, 89, 12299–12305.CrossRefGoogle Scholar
  22. Liu, Y., Tu, D., Zheng, W., Lu, L., You, W., Zhou, S., Huang, P., Li, R., & Chen, X. (2018). A strategy for accurate detection of glucose in human serum and whole blood based on an upconversion nanoparticles-polydopamine nanosystem. Nano Research, 11, 3164–3174.CrossRefGoogle Scholar
  23. Luo, Z., Zhang, L., Zeng, R., Su, L., & Tang, D. (2018). Targeted delivery of a γ-glutamyl transpeptidase activatable near-infrared-fluorescent probe for selective cancer imaging. Analytical Chemistry, 90, 2875–2883.CrossRefGoogle Scholar
  24. Lv, J., Zhao, S., Wu, S., & Wang, Z. (2017). Label-free piezoelectric biosensor for prognosis and diagnosis of systemic lupus erythematosus. Biosensors & Bioelectronics, 90, 203–209.CrossRefGoogle Scholar
  25. Ma, L., Liu, F., Lei, Z., & Wang, Z. (2017). A novel upconversion@polydopamine core@shell nanoparticle based aptameric biosensor for biosensing and imaging of cytochrome c inside living cells. Biosensors & Bioelectronics, 87, 638–645.CrossRefGoogle Scholar
  26. Mei, Q. S., Jing, H. R., Li, Y., Yisibashaer, W., Chen, J., Li, B. N., & Zhang, Y. (2016). Smartphone based visual and quantitative assays on upconversional paper sensor. Biosensors and Biolelectronics, 75, 427–432.CrossRefGoogle Scholar
  27. Mendez-Gonzalez, D., Laurenti, M., Latorre, A., Somoza, A., Vazquez, A., Negredo, A. I., López-Cabarcos, E., Calderón, O. G., Melle, S., & Rubio-Retama, J. (2017). Oligonucleotide sensor based on selective capture of upconversion nanoparticles triggered by target-induced DNA interstrand ligand reaction. ACS Applied Materials & Interfaces, 9, 12272–12281.CrossRefGoogle Scholar
  28. Näreoja, T., Vehniäinen, M., Lamminmäki, U., Hänninen, P. E., & Härmä, H. (2009). Study on nonspecificity of an immuoassay using Eu-doped polystyrene nanoparticle labels. Journal of Immunological Methods, 345, 80–89.CrossRefGoogle Scholar
  29. Neacsu, I. A., Stoica, A. E., Vasile, B. S., & Andronescu, E. (2019). Luminescent hydroxyapatite doped with rare earth elements for biomedical applications. Nanomaterials, 9, 239. Scholar
  30. Ow, H., Larson, D. R., Srivastava, M., Baird, B. A., Webb, W. W., & Wiesner, U. (2005). Bright and stable core-shell fluorescent silica nanoparticles. Nano Letters, 2005(5), 113–117.Google Scholar
  31. Park, Y. I., Lee, K. T., Suh, Y. D., & Hyeon, T. (2015). Upconverting nanoparticles: A versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chemical Society Reviews, 44, 1302–1317.CrossRefGoogle Scholar
  32. Perera, T. S. H., Han, Y., Lu, X., Wang, X., Dai, H., & Li, S. (2015). Rare earth doped apatite nanomaterials for biological application. Journal of Nanomaterials, 2015, 705390. Scholar
  33. Qu, A., Wu, X., Xu, L., Liu, L., Ma, W., Kuang, H., & Xu, C. (2017). SERS- and luminescence-active Au–Au–UCNP trimers for attomolar detection of two cancer biomarkers. Nanoscale, 9, 3865–3872.CrossRefGoogle Scholar
  34. Rafique, R., Kailasa, S. K., & Park, T. J. (2019). Recent advances of upconversion nanoparticles in theranostics and bioimaging applications. Trends in Analytical Chemistry, 120, 115646.CrossRefGoogle Scholar
  35. Son, A., Dhirapong, A., Dosev, D. K., Kennedy, I. M., Weiss, R. H., & Hristova, K. R. (2008b). Rapid and quantitative DNA analysis of genetic mutations for polycystic kidney disease (PKD) using magnetic/luminescent nanoparticles. Analytical and Bioanalytical Chemistry, 390, 1829–1835.CrossRefGoogle Scholar
  36. Son, A., Dosev, D., Nichkova, M., Ma, Z., Kennedy, I. M., Scow, K. M., & Hristova, K. R. (2007). Quantitative DNA hybridization in solution using magnetic/luminescent core shell nanoparticles. Analytical Biochemistry, 370, 186–194.CrossRefGoogle Scholar
  37. Son, A., Nichkova, M., Dosev, D., Kennedy, I. M., & Hristova, K. R. (2008a). Luminescent lanthanide nanoparticles as labels in DNA microarrays for quantification of methyl tertiary butyl ether degrading bacteria. Journal of Nanoscience and Nanotechnology, 8, 2463–2467.Google Scholar
  38. Song, X., Zhang, J., Yue, Z., Wang, Z., Liu, Z., & Zhang, S. (2017). Dual-activator codoped upconversion nanoprobe with core–multishell structure for in vitro and in vivo detection of hydroxyl radical. Analytical Chemistry, 89, 11021–11026.CrossRefGoogle Scholar
  39. Tsang, M. K., Ye, W., Wang, G., Li, J., Yang, M., & Hao, J. (2016). Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system. ACS Nano, 10, 598–605.CrossRefGoogle Scholar
  40. Tsien, R. Y. (1988). Fluorescence measurement and photochemical manipulation of cytosolic free calcium. Trends in Neurosciences, 11, 419–424.CrossRefGoogle Scholar
  41. Tu, D., Liu, L., Ju, Q., et al. (2011). Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angewandte Chemie International Edition, 50, 6306–6310.CrossRefGoogle Scholar
  42. Tu, D., Liu, Y., Zhu, H., & Chen, X. (2013). Optical/magnetic multimodal bioprobes based on lanthanide-doped inorganic nanocrystals. Chemistry - A European Journal, 19, 5516–5527.CrossRefGoogle Scholar
  43. van de Rijke, F., Zijlmans, H., Li, S., Vail, T., Raap, A. K., Niedbala, R. S., & Tanke, H. J. (2001). Up-converting phosphor reporters for nucleic acid microarrays. Nature Biotechnology, 19, 273–276.CrossRefGoogle Scholar
  44. van den Eeckhout, K., Poelman, D., & Smet, P. (2013). Persistent luminescence in non-Eu2+-doped compounds: A review. Materials, 6, 2789.CrossRefGoogle Scholar
  45. Wang, F., Li, W., Wang, J., Ren, J., & Qu, X. (2015). Detection of telomerase on upconversion nanoparticle modified cellulose paper. Chemical Communications, 51, 11630–11633.CrossRefGoogle Scholar
  46. Wang, L., Li, P., & Wang, L. (2008). Luminescent and hydrophilic LaF3-polymer nanocomposite for DNA detection. Luminescence, 24, 39–44.CrossRefGoogle Scholar
  47. Wang, M., Hou, W., Mi, C. C., Wang, W. X., Xu, Z. R., Teng, H. H., Mao, C. B., & Xu, S. K. (2009). Immunoassay of goat antihuman immunoglobulin G antibody based on luminescence resonance energy transfer between near-infrared responsive NaYF4:Yb, Er upconversion fluorescent nanoparticles and gold nanoparticles. Analytical Chemistry, 81, 8783–8789.CrossRefGoogle Scholar
  48. Wu, S., Duan, N., Shi, Z., Fang, C., & Wang, Z. (2014). Simultaneous aptasensor for multiplex pathogenic bacteria detection based on multicolor upconversion nanoparticles labels. Analytical Chemistry, 86, 3100–3107.CrossRefGoogle Scholar
  49. Yi, G., Lu, H., Zhao, S., Ge, Y., Yang, W., Chen, D., & Guo, L.-H. (2004). Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors. Nano Letters, 4, 2191–2196.CrossRefGoogle Scholar
  50. You, M., Lin, M., Gong, Y., Wang, S., Li, A., Ji, L., Zhao, H., Ling, K., Wen, T., Huang, Y., Gao, D., Ma, Q., Wang, T., Ma, A., Li, X., & Xu, F. (2017). Household fluorescent lateral flow strip platform for sensitive and quantitative prognosis of heart failure using dual-color upconversion nanoparticles. ACS Nano, 11, 6261–6270.CrossRefGoogle Scholar
  51. Zhang, J., Wang, S., Gao, N., Feng, D., Wang, L., & Chen, H. (2015). Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods. Biosensors & Bioelectronics, 72, 282–287.Google Scholar
  52. Zhang, L., Ling, B., Wang, L., & Chen, H. (2017). A near-infrared luminescent Mn2+-doped NaYF4:Yb,Tm/Fe3+ upconversion nanoparticles redox reaction system for the detection of GSH/Cys/AA. Talanta, 172, 95–101.CrossRefGoogle Scholar
  53. Zhao, B., & Li, Y. (2018). Facile synthesis of near-infrared-excited NaYF4:Yb3+, Tm3+ nanoparticles for label-free detection of dopamine in biological fluids. Talanta, 179, 478–484.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Suresh Kumar Kailasa
    • 1
    Email author
  • Janardhan Reddy Koduru
    • 2
  • Thriveni Thenepalli
    • 3
  1. 1.Department of Applied ChemistryS. V. National Institute of TechnologySuratIndia
  2. 2.Department of Environmental EngineeringKwangwoon UniversitySeoulRepublic of Korea
  3. 3.Mineral Resources Division, Center for Carbon MineralizationKorea Institute of Geosciences and Mineral Resources (KIGAM)DaejeonSouth Korea

Personalised recommendations