Advertisement

Investigation on Extraction and Recovery of Rare Earth Elements from Secondary Solid Wastes

  • Saroj Sekhar Behera
  • Ranjan Kumar Mohapatra
  • Debadutta Das
  • Pankaj Kumar Parhi
Chapter
  • 2 Downloads

Abstract

At present days the secondary solid wastes including e-wastes, catalyst waste, magnet waste, and scrap alloys have become important sources owing to claiming of a considerable amount of REE metals. Moreover, the global demand of the REE metals in recent days is extremely high for their extensive usages on making high-end materials. This certainly lured metallurgists for developing suitable processing technology for efficient and definite recovery of the REE metal values from the above sources as the existence of rare earth metals bearing minerals is limited. Various pyrometallurgical and hydrometallurgical approaches as well as the combination of both approaches have been adopted by different groups of researchers for effective recovery of REEs. The pyro-processing approach has a number of disadvantages and hence hydrometallurgical process accomplishing leaching-solvent extraction-precipitation route is being comprehensively adopted in most of the rare earth metallurgy. The adaptation of microwave (MW) assistance and ultrasound wave (UW) is becoming significant in chemical leaching processes. However in solvent extraction process in addition to the usage of commercial reagents, ionic liquids (ILs) have been reported to be very high process selective and promising. In terms of shortcomings, this chapter gives a detailed information about the sources of generation of each of these secondary solid wastes, issues and challenges, extraction strategies, prospective of hydrometallurgy, leaching process, assistance of MW and US and leaching mechanism, liquid-liquid extraction for separation of REE using commercial and noble IL reagents, SX mechanism study, and recovery of the REE metals through precipitation method.

Keywords

Hydrometallurgy Microwave Ultrasonic wave Solvent extraction (SX) Ionic liquids (ILs) 

Notes

Acknowledgements

Author Pankaj Kumar Parhi would like to acknowledge and say thanks to SERB, DST, Govt. of India, and DST-Inspire Programme for awarding Young Scientist (CS-076/2014) and Inspire Faculty (IFA12-CH-26) under Start-Up Research Grant and Inspire Faculty Award scheme, respectively, and the financial assistance provided under the research grant to investigate this work. Co-authors Saroj Sekhar Behera and Ranjan Kumar Mohapatra wish to acknowledge DST, Govt. of India.

References

  1. Al-harahshe, M., & Kingman, S. (2004). Microwave-assisted leaching- a review. Hydrometallurgy, 73, 189–203.CrossRefGoogle Scholar
  2. Alonso, E., Sherman, A. M., Wallington, T. J., Everson, M. P., Field, F. R., Roth, R., & Kirchain, R. E. (2012). Evaluating rare earth element availability: A case with revolutionary demand from clean technologies. Environmental Science and Technology, 46, 3406–3414.CrossRefGoogle Scholar
  3. Antolini, E., & Perez, J. (2011). The use of rare earth-based materials in low-temperature fuel cells. International Journal of Hydrogen Energy, 36, 15752–15765.CrossRefGoogle Scholar
  4. Banda, R., Jeon, H. S., & Lee, M. (2012a). Solvent extraction separation of La from chloride solution containing Pr and Nd with Cyanex 272. Hydrometallurgy, 121, 74–80.Google Scholar
  5. Banda, R., Jeon, H., & Lee, M., (2012b). Solvent extraction separation of Pr and Nd from chloride solution containing La using Cyanex 272 and its mixture with other extractants. Separation and Purification Technology, 98, 481–487.Google Scholar
  6. Barik, S. P., Park, K.-h., Parhi, P. K., Park, J.-t., & Nam, C.-w. (2012). Extraction of metal values from waste spent petroleum catalyst using acidic solutions. Separation and Purification Technology, 101, 85–90.CrossRefGoogle Scholar
  7. Barik, S. P., Prabaharan, G., & Kumar, L. (2017). Leaching and separation of Co and Mn from electrode materials of spent lithium-ion batteries using hydrochloric acid: Laboratory and pilot scale study. Journal of Cleaner Production, 147, 37–43.CrossRefGoogle Scholar
  8. Bayca, S. U. (2013). Microwave radiation leaching of colemanite in sulfuric acid solutions. Separation and Purification Technology, 105, 24–32.CrossRefGoogle Scholar
  9. Behera, S. S., Panda, S. K., Mandal, D., & Parhi, P. K. (2019). Ultrasound and microwave assisted leaching of neodymium from waste magnet using organic solvent. Hydrometallurgy, 185, 61–70.CrossRefGoogle Scholar
  10. Behera, S. S., & Parhi, P. K. (2016). Leaching kinetics study of neodymium from the scrap magnet using acetic acid. Separation and Purification Technology, 160, 59–66.CrossRefGoogle Scholar
  11. Bigum, M., Brogaard, L., & Christensen, T. H. (2012). Metal recovery from high grade WEEE: A life cycle assessment. Journal of Hazardous Materials, 207, 8–14.CrossRefGoogle Scholar
  12. Binnemans, K., Jones, P. T., Blanpain, B., Van Gerven, T., Yang, Y., Walton, A., & Buchert, M. (2013). Recycling of rare earths: A critical review. Journal of Cleaner Production, 51(1–22), 1.CrossRefGoogle Scholar
  13. Boudreault, R., Fournier, J., & Primeau, D.. (2013). Processes for treating fly ashes. Patent WO 2013142957.Google Scholar
  14. Buschow, K. H. J. (1994). Trends in rare-earth permanent-magnets. IEEE Transactions on Magnetics, 30, 565–570.CrossRefGoogle Scholar
  15. Balde, C. P., Forti, V., Gray, V., Kuehr, R., & Stegmann, P (2017). The global e-waste monitor 2017: Quantities, flows and resources. United Nations University, International Telecommunication Union, and International Solid Waste Association, Bonn, Geneva, and Vienna 2017.Google Scholar
  16. Całus-Moszko, J., & Białecka, B. (2013). Analysis of the possibilities of rare earth elements obtaining from coal and fly ash. Gospodarka Surowcami Mineralnymi-Mineral Resources Management, 29, 67–80.CrossRefGoogle Scholar
  17. Chu, S. (2011). Critical materials strategy. DIANE publishing. Google Scholar
  18. Cui, J., & Forssberg, E. (2003). Mechanical recycling of waste electric and electronic equipment: A review. Journal of Hazardous Materials, 99, 243–263.CrossRefGoogle Scholar
  19. Dang, T., Frisk, T., & Grossman, M. (2002). Applications of surface analytical techniques for study of the interactions between mercury and fluorescent lamp materials. Analytical and Bioanalytical Chemistry, 373, 560–570.CrossRefGoogle Scholar
  20. Das, S., Behera, S. S., Murmu, B., Mohapatra, R. k., Mandal, D., Samantray, R., Parhi, P. k., & Senanayake, G. (2018). Extraction of scandium (III) from acidic solutions using organo-phosphoric acid reagents: A comparative study. Separation and Purification Technology, 202, 248–258.CrossRefGoogle Scholar
  21. European Commission. (2010). Critical raw materials for the EU, report of the ad-hoc working group on defining critical raw materials. Brussels: European Commission.Google Scholar
  22. Galema, S. A. (1997). Microwave chemistry. Chemical Society Reviews, 26, 233–238.CrossRefGoogle Scholar
  23. Gambogi, J. (2010). Titanium and titanium dioxide, mineral commodity summaries. US Geological Survey, 176–178.Google Scholar
  24. Gambogi, J. (2014). Mineral commodity summaries: Rare earths 2014. Washington, DC: U.S. Geological Survey.Google Scholar
  25. Ghosh, A., & Ray, H. S. (1991). Principles of extractive metallurgy. New Delhi: New Age International.Google Scholar
  26. Ghosh, B., Ghosh, M. K., Parhi, P. K., Mukherjee, P. S., & Mishra, B. K. (2015). Waste printed circuit boards recycling: An extensive assessment of current status. Journal of Cleaner Production, 94, 5–19.CrossRefGoogle Scholar
  27. Guo, C., Jin, C., Peng, J.-H., & Wan, R.-D. (2010). Green evaluation of microwave-assisted leaching process of high titanium slag on life cycle assessment. Transactions of Nonferrous Metals Society of China, 20, 198–204.CrossRefGoogle Scholar
  28. Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient. Advanced Materials, 23, 821–842.CrossRefGoogle Scholar
  29. He, H., & Meng, J. (2011). Recycling rare earth from spent FCC catalyst using P507 (HEH/EHP) as extractant. Zhongnan Daxue Xuebao, Ziran Kexueban, 42, 2651–2657.Google Scholar
  30. Hildenbrand, V. D., Denissen, C. J. M., Van der Pol, A. J. H. P., Hendriks, A. H. C., Van der Marel, C., Snijders, J. H. M., Tamminga, Y., Brongersma, H. H., & Viitanen, M. M. (2003). Reduction of mercury loss in fluorescent lamps coated with thin metal-oxide films. Journal of the Electrochemical Society, 150, H147–H155.CrossRefGoogle Scholar
  31. Hildenbrand, V. D., Denissen, C. J. M., Geerdinck, L. M., van der Marel, C., Snijders, J. H. M., & Tamminga, Y. (2000). Interactions of thin oxide films with a low-pressure mercury discharge. Thin Solid Films, 371, 295–302.CrossRefGoogle Scholar
  32. Horrigan, R. V. (1981). Rare earth polishing compounds. In K. A. Gschneidner (Ed.), Industrial applications of rare earth elements (Vol. 164, pp. 95–100). Washington, DC: American Chemical Society.CrossRefGoogle Scholar
  33. Hua, Z., Wang, J., Wang, L., Zhao, Z., Li, X., Xiao, Y., & Yang, Y. (2014). Selective extraction of rare earth elements from NdFeB scrap by Molten Chlorides. ACS Sustainable Chemistry & Engineering, 2, 2536–2543.CrossRefGoogle Scholar
  34. Huang, Y., Zhang, T.-a., Dou, Z., Han, G., Cao, Y., & Hou, C. (2019). Decomposition mechanism of a mixed rare earth concentrate with sodium hydroxide in the microwave heating process. Minerals Engineering, 132, 220–227.CrossRefGoogle Scholar
  35. Itoh, M., Miura, K., & Machida, K.-i. (2009). Novel rare earth recovery process on Nd–Fe–B magnet scrap by selective chlorination using NH4Cl. Journal of Alloys and Compounds, 477, 484–487.CrossRefGoogle Scholar
  36. Itoh, M., Miura, K., & Machida, K.-i. (2007). A novel process of resource recovery from rare earth magnet scrap using carbonylation reaction and recycles as electromagnetic wave absorber. Journal of Ceramic Society Japan, 115, 628–632.CrossRefGoogle Scholar
  37. Jafarifara, D., Daryanavard, M. R., & Sheibani, S. (2005). Ultra-fast microwave-assisted leaching for recovery of platinum from spent catalyst. Hydrometallurgy, 78, 166–171.CrossRefGoogle Scholar
  38. Jiang, Y., Shibayama, A., Liu, K., & Fujita, T. (2004). Recovery of rare earths from the spent optical glass by hydrometallurgical process. Canadian Metallurgical Quarterly, 43, 431–438.CrossRefGoogle Scholar
  39. Jiang, Y., Shibayama, A., Liu, K., & Fujita, T. (2005). A hydrometallurgical process for extraction of lanthanum, yttrium and gadolinium from spent optical glass. Hydrometallurgy, 76(1–2), 1–9.CrossRefGoogle Scholar
  40. Joshi, Prakash B., Preda, Dorin V., Skyler, David A., Tsinberg, Anait, David Green, B., & Marinelli, William J. (2015). Recovery of rare earth elements and compounds from coal ash. U.S. Patent No. 8,968,688.Google Scholar
  41. Justel, T., Nikol, H., & Ronda, C. (1998). New developments in the field of luminescent materials for lighting and displays. Angewandte Chemie International Edition, 37, 3084–3103.CrossRefGoogle Scholar
  42. Kalb, Paul D., Melamed, Dan, Patel, Bhavesh R., & Fuhrmann, Mark. (2002). Treatment of mercury containing waste. U.S. Patent No. 6,399,849.Google Scholar
  43. Kashiwakura, S., Kumagai, Y., Kubo, H., & Wagatsuma, K. (2013). Dissolution of rare earth elements from coal fly ash particles in a dilute H2SO4 solvent. Open Journal of Physical Chemistry, 3, 69.CrossRefGoogle Scholar
  44. Kim, C.-J., Yoon, H.-S., Chung, K. W., Lee, J.-Y., Kim, S.-D., Shin, S. M., Lee, S.-J., et al. (2014). Leaching kinetics of lanthanum in sulfuric acid from rare earth element (REE) slag. Hydrometallurgy, 146, 133–137.CrossRefGoogle Scholar
  45. Kim, E.-y., Kim, M.-S., Lee, J.-c., Jeong, J., & Pandey, B. D. (2011). Leaching kinetics of copper from waste printed circuit boards by electro-generated chlorine in HCl solution. Hydrometallurgy, 107, 124–132.CrossRefGoogle Scholar
  46. King, J. F., Taggart, R. K., Smith, R. C., Hower, J. C., & Hsu-Kim, H. (2018). Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. International Journal of Coal Geology, 195, 75–83.CrossRefGoogle Scholar
  47. Krishnamurthy, N., & Gupta, C. K. (2005). Extractive metallurgy of rare earths. Boca Raton: CRC Press.Google Scholar
  48. Kul, M., Topkaya, Y., & Karakaya, I. (2008). Rare earth double sulfates from pre concentrated Bastnasite. Hydrometallurgy, 93, 129–135.CrossRefGoogle Scholar
  49. Kuehl, B. (1991). Verfahren und Vorrichtung zur Entsorgung von mit Leuchtstoff versehenen quecksilberhaltigen Lampen. German Patent DE3932772 A, 1.Google Scholar
  50. Li, L., Ge, J., Chen, R., Wu, F., Chen, S., & Zhang, X. (2010). Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Management, 30, 2615–2621.CrossRefGoogle Scholar
  51. Li, L., Zhai, L., Zhang, X., Lu, J., Chen, R., Wu, F., & Amine, K. (2014). Recovery of valuable metals from spent lithium-ion batteries by ultrasonic-assisted leaching process. Journal of Power Sources, 262, 380–385.CrossRefGoogle Scholar
  52. Lyman, J. W., & Palmer, G. R. (1995). Hydrometallurgical treatment of nickel-metal hydride battery electrodes. No. CONF-951105-. Warrendale, PA: Minerals, Metals and Materials Society.Google Scholar
  53. Makino, K., Mossoba, M. M., & Riesz, P. (1982). Chemical effects of ultrasound on aqueous solutions. Evidence for hydroxyl and hydrogen free radicals (.cntdot.OH and .cntdot.H) by spin trapping. Journal of the American Chemical Society, 104, 3537–3539.CrossRefGoogle Scholar
  54. Makino, K., Mossoba, M. M., & Riesz, P. (1983). Chemical effects of ultrasound on aqueous solutions. Formation of hydroxyl radicals and hydrogen atoms. The Journal of Physical Chemistry, 87, 1369–1377.CrossRefGoogle Scholar
  55. Massari, S., & Ruberti, M. (2013). Rare earth elements as critical raw materials: Focus on international markets and future strategies. Resources Policy, 38, 36–43.CrossRefGoogle Scholar
  56. Miura, K., Itoh, M., & Machida, K.-I. (2008). Extraction and recovery characteristics of Fe element from Nd–Fe–B sintered magnet powder scrap by carbonylation. Journal of Alloys and Compounds, 408, 1391–1395.Google Scholar
  57. Mochizuki, Y., Tsubouchi, N., & Sugawara, K. (2013). Selective recovery of rare earth elements from Dy containing NdFeB magnets by chlorination. ACS Sustainable Chemistry & Engineering, 1, 655–662.CrossRefGoogle Scholar
  58. Muller, T., & Friedrich, B. (2006). Development of a recycling process for nickel-metal hydride batteries. Journal of Power Sources, 158, 1498–1509.CrossRefGoogle Scholar
  59. Murase, K., Machida, K.-i., & Adachi, G.-y. (1995). Recovery of rare metals from scrap of rare earth inter-metallic material by chemical vapour transport. Journal of Alloys and Compounds, 217, 218–225.CrossRefGoogle Scholar
  60. Nance, P., Patterson, J., Pecquet, A. M., Foronda, N. M., & Dourson, M. (2012). Human health risks from mercury exposure from broken compact fluorescent lamps (CFLs). Regulatory Toxicology and Pharmacology, 62, 542–552.CrossRefGoogle Scholar
  61. Niinisto, L. (1987). Industrial applications of the rare earths, an overview. Inorganica Chimica Acta, 140, 339–343.CrossRefGoogle Scholar
  62. Parhi, P. K., Behera, S. S., Das, S., Murmu, B., & Samantray, R. (2017a). Hydrometallurgical processing technology for recovery of the light rare earth metals: Scandium (III) and neodymium (III) from primary and secondary sources Mineral Processing-Methods, Applications and Technology. New York: Nova Science Publisher.Google Scholar
  63. Parhi, P. K., Behera, S. S., & Mohapatra, S. (2017b). Processing technology for treatment of primary and secondary source bearing base metals: Comprehensive hydrometallurgical approach on recovery of copper (Cu) and zinc (Zn) mineral processing-methods, applications and technology. New York: Nova Science Publisher.Google Scholar
  64. Parhi, P. K., Park, K.-h., & Senanayake, G. (2013). A kinetic study on hydrochloric acid leaching of nickel from Ni–Al2O3 spent catalyst. Journal of Industrial and Engineering Chemistry, 19, 589–594.CrossRefGoogle Scholar
  65. Pinto, I. S. S., & Soares, H. M. V. M. (2013). Microwave-assisted selective leaching of nickel from spent hydrodesulphurization catalyst: A comparative study between sulphuric and organic acids. Hydrometallurgy, 140, 20–27.CrossRefGoogle Scholar
  66. Prabaharan, G., & Barik, S. P. (2016). Process for recovery of metal values from alnico scarps by electro-chemical leaching technique. Separation and Purification Technology, 169, 78–82.CrossRefGoogle Scholar
  67. Querol, X., Fernandez-Turiel, J. L., & Lopez-Soler, A. (1995). Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74, 331–343.CrossRefGoogle Scholar
  68. Ramapati, K. & Saumya, T. (2007). Electronics-hi-tech-highly toxic India; Green Peace.Google Scholar
  69. Resende, L. V., & Morais, C. A. (2010). Study of the recovery of rare earth elements from computer monitor scrap-leaching experiments. Minerals Engineering, 23, 277–280.CrossRefGoogle Scholar
  70. Ronda, C. R. (1995). Phosphors for lamps and displays—an applicational view. Journal of Alloys and Compounds, 225, 534–538.CrossRefGoogle Scholar
  71. Saito, T., Sato, H., Ozawa, S., Yu, J., & Motegi, T. (2003). The extraction of Nd from waste Nd–Fe–B alloys by the glass slag method. Journal of Alloys and Compounds, 353, 189–193.CrossRefGoogle Scholar
  72. Sayan, E., & Bayramoglu, M. (2004). Statistical modeling and optimization of ultrasound-assisted sulfuric acid leaching of TiO2 from red mud. Hydrometallurgy, 71, 397–401.CrossRefGoogle Scholar
  73. Seredin, V. V. (1996). Rare earth element-bearing coals from the Russian Far East deposits. International Journal of Coal Geology, 94, 67–93.CrossRefGoogle Scholar
  74. Seredin, V. V., & Dai, S. (2012). Coal deposits as potential alternative sources for lanthanides and yttrium. International Journal of Coal Geology, 94(2012), 67–93.CrossRefGoogle Scholar
  75. Singh, N., Wang, J., & Li, J. (2010). Waste cathode rays tube: An assessment of global demand for processing. Procedia Environmental Sciences, 31, 465–474.CrossRefGoogle Scholar
  76. Sinha, S., Meshram, P., & Pandey, B. D. (2016). Metallurgical processes for the recovery and recycling of lanthanum from various resources—A review. Hydrometallurgy, 160, 47–59.CrossRefGoogle Scholar
  77. Takeda, O., Okabe, T. H., & Umetsu, Y. (2006). Recovery of neodymium from a mixture of magnet scrap and other scrap. Journal of Alloys and Compounds, 408, 387–390.CrossRefGoogle Scholar
  78. Tanaka, M., Oki, T., Koyama, K., Narita, H., & Oishi, T. (2013). Recycling of rare earths from scrap, Chapter 255. In J. C. G. Bunzli & V. K. Pecharsky (Eds.), Handbook on the physics and chemistry of rare earths (Vol. 43, pp. 159–212). Amsterdam: Elsevier.Google Scholar
  79. Tercero Espinoza, L., Hummen, T., Brunot, A., Hovestad, A., Pena Garay, I., Velte, D., Smuk, L., Todorovic, J., Van Der Eijk, C., & Joce, C. (2015). Critical raw materials substitution profiles. Karlsruhe: Fraunhofer Institute for Systems and Innovation Research.Google Scholar
  80. Terziev, A. L., & Minkova, N. L. (1997). Regeneration of waste rare earth oxides. Bulgarian Chemical Communications, 29, 274–284.Google Scholar
  81. Thostenson, E., & Quan, Z. (1999). Microwave processing: Fundamentals and applications. Composites Part A: Applied Science and Manufacturing, 30, 1055–1071.CrossRefGoogle Scholar
  82. Tian, X., Yin, X., Wu, Y., Tan, Z., & Xu, P. (2016). Characterization, recovery potentiality, and evaluation on recycling major metals from waste cathode-ray tube phosphor powder by using sulphuric acid leaching. Journal of Cleaner Production, 135, 1210–1217.CrossRefGoogle Scholar
  83. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E., & Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: Hydrometallurgy in recycling. Minerals Engineering, 25, 28–37.CrossRefGoogle Scholar
  84. Vierheilig, A.A.. (2012). Methods of recovering rare earth elements. U.S. Patent No. 8,263,028.Google Scholar
  85. Wang, X., Li, W. & Li, D. (2011). Extraction and stripping of rare earths using mixtures of acidic phosphorus-based reagents. Journal of Rare Earths, 29(5), 413–415.Google Scholar
  86. Wang, X., Chandrase, S., Duan, X.-h., Peng, J.-h., Yang, D.-j., & Shao-hua, J. (2013). Leaching kinetics of zinc residues augmented with ultrasound. Separation and Purification Technology, 115, 66–72.CrossRefGoogle Scholar
  87. Wu, F., Cao, Z., Wang, S., & Zhong, H. (2018). Novel and green metallurgical technique of comprehensive utilization of refractory limonite ores. Journal of Cleaner Production, 171, 831–843.CrossRefGoogle Scholar
  88. Xie, F., Li, H., Ma, Y., Li, C., Cai, T., Huang, Z., & Yuan, G. (2009). The ultrasonically assisted metals recovery treatment of printed circuit board waste sludge by leaching separation. Journal of Hazardous Materials, 170, 430–435.CrossRefGoogle Scholar
  89. Yang, H., Wang, W., Zhang, D., Deng, Y., Cui, H., Chen, J., & Li, D. (2010). Recovery of trace rare earths from high-level Fe3+ and Al3+ waste of oil shale ash (Fe-Al-OSA). Industrial & Engineering Chemistry Research, 49, 11645–11651.CrossRefGoogle Scholar
  90. Yang, X., Zhang, J., & Fang, X. (2014). Rare earth element recycling from waste nickel metal hydride batteries. Journal of Hazardous Materials, 279, 384–388.CrossRefGoogle Scholar
  91. Yao, Z., Xie, Z., & Tang, J. (2016). A typical e-waste—Cathode ray tube glass: Alkaline leaching in the sulfur-containing medium. Procedia Environmental Sciences, 31, 880–886.CrossRefGoogle Scholar
  92. Yin, X., Wu, Y., Tian, X., Yu, J., Zhang, Y.-N., & Zuo, T. (2016). Green recovery of rare earths from waste cathode ray tube phosphors: Oxidative leaching and kinetic aspects. ACS Sustainable Chemistry and Engineering, 4, 7080–7089.CrossRefGoogle Scholar
  93. Yu, Z. S., & Chen, M. B. (1995). Rare earth elements and their applications. Beijing: Metallurgical Industry Press.Google Scholar
  94. Zhang, Q., & Saito, F. (2006). Non-thermal process for extracting rare earths from bastnaesite by means of mechanochemical treatment. Hydrometallurgy, 47, 231–241.CrossRefGoogle Scholar
  95. Zhang, R. L., Zhang, X. F., Tang, S. Z., & Huang, A. D. (2015). Ultrasound-assisted HCl–NaCl leaching of lead-rich and antimony-rich oxidizing slag. Ultrasonics Sonochemistry, 27, 187–191.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Saroj Sekhar Behera
    • 1
  • Ranjan Kumar Mohapatra
    • 2
    • 1
  • Debadutta Das
    • 3
  • Pankaj Kumar Parhi
    • 4
    • 1
  1. 1.School of Chemical Technology and School of BiotechnologyKalinga Institute of Industrial Technology (KIIT) Deemed to be UniversityBhubaneswarIndia
  2. 2.Department of Chemistry, Government College of EngineeringKeonjharIndia
  3. 3.Department of ChemistrySukanti Degree CollegeSubarnapurIndia
  4. 4.Convergence Research Center for Development of Mineral ResourcesKorea Institute of Geoscience and Mineral Resources (KIGAM)DaejeonSouth Korea

Personalised recommendations