Advertisement

The Role of Near-Infrared Fluorescence Imaging in the Assessment of Peritoneal Carcinomatosis from Colorectal Cancer

  • Gennaro GaliziaEmail author
  • Andrea Mabilia
  • Francesca Cardella
  • Annamaria Auricchio
  • Nicoletta Basile
  • Silvia Erario
  • Giovanni Del Sorbo
  • Paolo Castellano
  • Eva Lieto
Chapter
  • 22 Downloads

Abstract

Peritoneal carcinomatosis (PC) is a severe oncological condition originating from the mesothelium or, more frequently, from gastrointestinal or gynecological tumors. The PC is believed to be a terminal phase of the oncological disease and, if left untreated, has a median survival of approximately 6 months after diagnosis. PC originating from colorectal cancer is often a metachronous disease, and only 10–15% of patients with colorectal cancer show PC at the time of primary diagnosis. However, the peritoneum is involved up to 50% of cases in patients with colorectal cancer who develop tumor recurrence after potentially curative surgery of the primary tumor; and in 10–35% of cases it is the only site of tumor recurrence. The only potentially curative treatment in primary and metastatic peritoneal carcinomatosis is cytoreductive surgery associated with intraperitoneal hyperthermic chemotherapy (HIPEC) with a 5-year survival rate of 30–48%, in selected cases. One of the most critical problems in PC treatment is represented by the correct diagnosis of the peritoneal nodules and identification of smaller lesions. In recent years, new technologies have allowed surgeons to cope better with these limits. Intraoperative fluoroscopy (FI) is a recently revised imaging modality that could improve PC detection. Indocyanine green (ICG), a near-infrared contrast agent that may become fluorescent, has been shown to selectively accumulate in the tumor tissue, thus increasing diagnostic detection of PC.

This study was carried out to investigate the role of FI with ICG (ICG-FI) in the detection of peritoneal carcinomatosis from colorectal cancer.

Keywords

Peritoneal carcinomatosis Fluorescence imaging Indocyanine green Peritonectomy Cytoreductive surgery Colorectal cancer Peritoneal index 

Supplementary material

Video 21.1

The video shows our experience with fluorescence imaging guided surgery with indocyanine green. Diagnosis and treatment of peritoneal carcinomatosis, HCC, and liver metastasis from colorectal cancer are shown. (MP4 13157 kb)

References

  1. 1.
    Pontiggia P, Pontiggia E. Immunità e ipertermia nella cura dei tumori. ETS edizioni 8; 2016.Google Scholar
  2. 2.
    Glehen O, Mohamed F, Gilly FN. Peritoneal carcinomatosis from digestive tract cancer: new management by cytoreductive surgery and intraperitoneal chemohyperthermia. Lancet Oncol. 2004;5:219–28.CrossRefGoogle Scholar
  3. 3.
    Chua TC, Yan TD, Saxena A, et al. Should the treatment of peritoneal carcinomatosis by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy still be regarded as a highly morbid procedure: a systematic review of morbidity and mortality. Ann Surg. 2009;249:900–7.CrossRefGoogle Scholar
  4. 4.
    Jessup MJ, Goldberg RM, Asara EA, et al. Colon and rectum. In: American Joint Committee on Cancer, editor. AJCC cancer staging manual. 8th ed. Berlin: Springer; 2017. p. 251–74.CrossRefGoogle Scholar
  5. 5.
    Sugarbaker PH. Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. Semin Surg Oncol. 1998;14:254–61.CrossRefGoogle Scholar
  6. 6.
    Van der Speeten K, Stuart OA, Sugarbaker PH. Pharmacokinetics and pharmacodynamics of perioperative cancer chemotherapy in peritoneal surface malignancy. Cancer J. 2009;15(3):216–24.CrossRefGoogle Scholar
  7. 7.
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136:359–86.CrossRefGoogle Scholar
  8. 8.
    Sugarbaker PH. Observations concerning cancer spread within the peritoneal cavity and concepts supporting an ordered pathophysiology. Cancer Treat Res. 1996;82:79–100.CrossRefGoogle Scholar
  9. 9.
    Chu DZ, Lung NP, Thompson C, et al. Peritoneal carcinomatosis in non-gynecologic malignancies: a prospective study of prognostic factors. Cancer. 1989;63:364–7.CrossRefGoogle Scholar
  10. 10.
    Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis in non-gynecologic malignancies: results of EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Kodera Y, Yamamura Y, Shimizu Y, et al. Peritoneal washing cytology: prognostic value of positive findings in patients with gastric carcinoma undergoing a potentially curative resection. J Surg Oncol. 1999;72:60–4.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Roviello F, Marrelli D, Neri A, et al. Treatment of peritoneal carcinomatosis by cytoreductive surgery and intraperitoneal hyperthermic chemoperfusion (IHCP): postoperative outcome and risk factors for morbidity. World J Surg. 2006;30:2033–40.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fujimoto S, Takahashi M, Mutou T, et al. Successful intraperitoneal hyperthermic chemoperfusion for the prevention of postoperative peritoneal recurrence in patients with advanced gastric carcinoma. Cancer. 1999;85:529–34.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Marrelli D, Roviello F, De Manzoni G, Italian Research Group for Gastric Cancer, et al. Different patterns of recurrence in gastric cancer depending on Lauren’s histological type: longitudinal study. World J Surg. 2002;26:1160–5.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roviello F, Marrelli D, de Manzoni G, Italian Research Group for Gastric Cancer, et al. Prospective study of peritoneal recurrence after curative surgery for gastric cancer. Br J Surg. 2003;90:1113–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Al-Shammaa HA, Li Y, Yonemura Y. Current status and future strategies of cytoreductive surgery plus intraperitoneal hyperthermic chemotherapy for peritoneal carcinomatosis. World J Gastroenterol. 2008;14:1159–66.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Portilla AG, Sugarbaker PH, Chang D. Second look surgery after cytoreductive and intraperitoneal chemotherapy for peritoneal–29 carcinomatosis from colorectal cancer: analysis of prognostic features. World J Surg. 1999;23:23–9.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sadeghi B, Arvieux C, Glehen O, et al. Peritoneal carcinomatosis from non-gynecologic malignancies: results of the EVOCAPE 1 multicentric prospective study. Cancer. 2000;88:358–63.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Stewart JH 4th, Shen P, Levine EA. Intraperitoneal hyperthermic chemotherapy for peritoneal surface malignancy: current status and future directions. Ann Surg Oncol. 2005;12(10):765–77.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yonemura Y, Endo Y, Yamaguchi T, et al. Mechanisms of the formation of the peritoneal dissemination in gastric cancer. Int J Oncol. 1996;8(4):795–802.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Glehen O, Kwiatkowski F, Sugarbaker PH, et al. Cytoreductive surgery combined with preoperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: a multi-institutional study. J Clin Oncol. 2004;22:3284–92.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Blackham AU, Russell GB, Stewert JH 4th, et al. Metastatic colorectal cancer: survival comparison of hepatic resection versus cytoreductive surgery and hyperthermic intraperitoneal chemotherapy. Ann Surg Oncol. 2014;21:2667–74.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Spratt JS, Adcock RA, Muskovin M, et al. Sistema di somministrazione clinica per la chemioterapia ipertermica intraperitoneale. Cancer Res. 1980;40:256–60.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221:29–42.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Esquivel J, Sugarbaker PH. Second aspect surgery in patients with peritoneal dissemination from appendicular neoplasia: analysis of prognostic factors in 98 patients. Ann Surg. 2001;234:198–205.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Deraco M, Nonaka D, Baratti D, et al. Prognostic analysis of clinicopathologic factors in 49 patients with diffuse malignant peritoneal mesothelioma treated with cytoreductive surgery and intraperitoneal hyperthermic perfusion. Ann Surg Oncol. 2006;13:229–37.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Moran B, Baratti D, Yan TD, et al. Consensus statement on the loco-regional treatment of appendiceal mucinous neoplasms with peritoneal dissemination (pseudomyxoma peritonei). J Surg Oncol. 2008;98:277–82.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Esquivel J, Sticca R, Sugarbaker P, Society of Surgical Oncology Annual Meeting, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Society of Surgical Oncology. Ann Surg Oncol. 2007;14:128–33.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Raspagliesi F, Kusamura S, Campos Torres JC, et al. Cytoreduction combined with intraperitoneal hyperthermic perfusion chemotherapy in advanced/recurrent ovarian cancer patients: the experience of National Cancer Institute of Milan. Eur J Surg Oncol. 2006;32:671–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jaquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–74.CrossRefGoogle Scholar
  31. 31.
    Begossi G, Gonzales-Moreno S, Ortega Perez G, et al. Cytoreduction and intraperitoneal chemotherapy for the management of peritoneal carcinomatosis, sarcomatosis and mesothelioma. Eur J Surg Oncol. 2002;28:80–7.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Dromain C, Leboulleux S, Auperin A, et al. Staging of peritoneal carcinomatosis: enhanced CT vs. PET/CT. Abdom Imaging. 2008;33:87–9.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Liberale G, Vankerckhove S, Caldon MG, et al. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: a pilot study. Ann Surg. 2016;264:1110–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sugarbaker PH. Successful management of microscopic residual disease in large bowel cancer. Cancer Chemother Pharmacol. 1999;43:15–25.CrossRefGoogle Scholar
  35. 35.
    Berthet B, Sugarbaker TA, Chang D, et al. Quantitative methodologies for selection of patients with recurrent abdominopelvic sarcoma for treatment. Eur J Cancer. 1999;3:413–9.CrossRefGoogle Scholar
  36. 36.
    Kim S, Lim YT, Soltesz EG, et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat Biotechnol. 2004;22:93–7.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Schaafsma BE, Mieog JSD, Hutteman M, et al. The clinical use of indocyanine green as a near-infrared fluorescent contrast agent for image-guided oncologic surgery. J Surg Oncol. 2011;104:323–32.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Polom K, Murawa D, Rho Y, et al. Current trends and emerging future of indocyanine green usage in surgery and oncology: a literature review. Cancer. 2011;117:4817–22.CrossRefGoogle Scholar
  39. 39.
    Fox IJ, Wood EH. Indocyanine green: physical and physiologic properties. Proc Staff Meet Mayo Clin. 1960;35:732–44.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Barabino G, Klein JP, Porcheron J, et al. Intraoperative near-infrared fluorescence imaging using indocyanine green in colorectal carcinomatosis surgery: proof of concept. Eur J Surg Oncol. 2016;42:1931–7.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bekheit M, Vibert E. Fluorescent-guided liver surgery: Paul Brousse experience and perspectives. In: Dip FD, editor. Fluorescence imaging for surgeons: concepts and applications, vol. 11. Cham: Springer; 2015. p. 117–26.CrossRefGoogle Scholar
  43. 43.
    Frangioni J. In vivo near-infrared fluorescence imaging. Curr Opin Chem Biol. 2003;7:626–34.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Sabapathy MV, Mentam J, Jacob PM, et al. Non invasive optical imaging and in vivo cell tracking of indocyanine green labeled human stem cells transplanted at superficial or in-depth tissue of SCID. Stem Cells Int. 2015;2015:606415.  https://doi.org/10.1155/2015/606415.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    FDA. Product Insert: Indocyanine Green (IC-GreenTM); 2016. http://www.accessdata.fda.gov/drugsatfda_docs/label/2006/011525s017bpdf.
  46. 46.
    Stanga PE, Lim JI, Hamilton P. Indocyanine green angiography in chorioretinal diseases: indications and interpretation: an evidence-based update. Ophthalmology. 2003;110:15–23.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Holm C, Tegeler J, Mayr M, et al. Monitoring free flaps using laser-induced fluorescence of indocyanine green: a preliminary experience. Microsurgery. 2002;22:278–87.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Munabi NC, Olorunnipa OB, Goltsman D, et al. The ability of intra-operative perfusion mapping with laser-assisted indocyanine green angiography to predict mastectomy flap necrosis in breast reconstruction: a prospective trial. J Plast Reconstr Aesthet Surg. 2014;67:449–55.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Makuuchi M, Kosuge T, Takayama T, et al. Surgery for small liver cancers. Semin Surg Oncol. 1993;9:298–304.CrossRefGoogle Scholar
  50. 50.
    Nanashima A, Abo T, Tobinaga S, et al. Indocyanine green retention rate at 15 minutes by correlated liver function parameters before hepatectomy. J Surg Res. 2011;169:119–25.CrossRefGoogle Scholar
  51. 51.
    Ishizawa T, Bandai Y, Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: an initial experience. Arch Surg. 2009;144:381–2.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Ishizawa T, Bandai Y, Ijichiet M, et al. Fluorescent cholangiography illuminating the biliary tree during laparoscopic cholecystectomy. Br J Surg. 2010;97:1369–77.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Ishizawa T, Tamura S, Masuda K, et al. Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg. 2009;208:1–4.CrossRefGoogle Scholar
  54. 54.
    Hellan M, Spinoglio G, Pigazzi A, et al. The influence of fluorescence imaging on the location of bowel transection during robotic left-sided colorectal surgery. Surg Endosc. 2014;28:1695–702.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Boni L, Fingerhut A, Marzorati A, et al. Indocyanine green fluorescence angiography during laparoscopic low anterior resection: results of a case-matched study. Surg Endosc. 2017;31:1836–40.CrossRefGoogle Scholar
  56. 56.
    Boni L, David G, Dionigi G, et al. Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc. 2016;30:2736–42.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Jafari MD, Wexner SD, Martz JE, et al. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): a multi-institutional study. J Am Coll Surg. 2015;220:82–92.CrossRefGoogle Scholar
  58. 58.
    Kitai T, Inomoto T, Miwa M, et al. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–5.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tanaka R, Nakashima K, Fujimoto W, et al. Sentinel lymph node detection in skin cancer using fluorescence navigation with indocyanine green. J Dermatol. 2009;36:468–70.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Nimura H, Narimiya N, Mitsumori N, et al. Infrared ray electronic endoscopy combined with indocyanine green injection for detection of sentinel nodes of patients with gastric cancer. Br J Surg. 2004;91:575–9.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Nagata K, Endo S, Hidaka E, et al. Laparoscopic sentinel node mapping for colorectal cancer using infrared ray laparoscopy. Anticancer Res. 2006;26:2307–12.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kusano M, Tajima Y, Yamazaki K, et al. Sentinel lymph node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel lymph node navigation surgery in gastrointestinal cancer. Dig Surg. 2008;25:103–8.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Noura S, Ohue M, Seki Y, et al. Feasibility of a lateral region sentinel lymph node biopsy of lower rectal cancer guided by indocyanine green using a near-infrared camera system. Ann Surg Oncol. 2010;17:144–51.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Hirche C, Mohr Z, Kneif S, et al. Ultrastaging of colon cancer by sentinel node biopsy using fluorescence navigation with indocyanine green. Int J Colorectal Dis. 2012;27:319–24.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Cahill RA, Anderson M, Wang LM, et al. Near-infrared (NIR) laparoscopy for intraoperative lymphatic road-mapping and sentinel node identification during definitive surgical resection of early-stage colorectal neoplasia. Surg Endosc. 2012;26:197–204.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Van der Pas MH, Ankersmit M, Stockmann HB, et al. Laparoscopic sentinel lymph node identification in patients with colon carcinoma using a near-infrared dye: description of a new technique and feasibility study. J Laparoendosc Adv Surg Tech A. 2013;23:367–71.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Liberale G, Vankerckhove S, Galdon MG, et al. Sentinel lymph node detection by blue dye versus indocyanine green fluorescence imaging in colon cancer. Anticancer Res. 2016;36:4853–8.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Ishizawa T, Fukushima N, Shibahara J, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115:2491–504.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Gotoh K, Yamada T, Ishikawa O, et al. A novel image-guided surgery of hepatocellular carcinoma by indocyanine green fluorescence imaging navigation. J Surg Oncol. 2009;100:75–9.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Harada N, Ishizawa T, Muraoka A, et al. Fluorescence navigation hepatectomy by vizualization of localized cholestasis from bile tumor infiltration. J Am Coll Surg. 2010;210:2–6.CrossRefGoogle Scholar
  71. 71.
    Yamamichi T, Oue T, Yonekura T, et al. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma. J Pediatr Surg. 2015;50:833–6.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Yokoyama N, Otani T, Hashidate H, et al. Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: preliminary results of a prospective study. Cancer. 2012;118:2813–9.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Frangioni JV. New technologies for human cancer imaging. J Clin Oncol. 2008;26:4012–21.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Velde EA, Veerman T, Subramaniam V, et al. The use of fluorescent dyes and probes in surgical oncology. Eur J Surg Oncol. 2009;36:6–15.CrossRefGoogle Scholar
  75. 75.
    Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18:17–25.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Gioux S, Choi HS, Frangioni JV. Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation. Mol Imaging. 2010;9:237–55.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Xiong L, Gazyakan E, Yang W, et al. Indocyanine green fluorescence-guided sentinel node biopsy: a meta-analysis on detection rate and diagnostic performance. Eur J Surg Oncol. 2014;40:843–9.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Lim C, Vibert E, Azoulay D, et al. Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J Visc Surg. 2014;151:117–24.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Lieto E, Auricchio A, Cardella F, et al. Fluorescence-guided surgery in the combined treatment of peritoneal carcinomatosis from colorectal cancer: preliminary results and considerations. World J Surg. 2018;42:1154–60.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lieto E, Galizia G, Cardella F, et al. Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors. Surg Innov. 2018;25:62–8.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Miyashiro I, Miyoshi N, Hiratsuka M, et al. Detection of sentinel node in gastric cancer surgery by indocyanine green fluorescence imaging: comparison with infrared imaging. Ann Surg Oncol. 2008;15:1640–3.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Takahashi H, Zaidi N, Berber E. An initial report on the intraoperative use of indocyanine green fluorescence imaging in the surgical management of liver tumors. J Surg Oncol. 2016;114:625–9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Faybik P, Hetz H. Plasma disappearance rate of indocyanine green in liver dysfunction. Transplant Proc. 2006;38:801–2.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Honoré C, Goéré D, Souadka A, et al. Definition of patients presenting a high risk of developing peritoneal carcinomatosis after curative surgery for colorectal cancer: a systematic review. Ann Surg Oncol. 2013;20:183–92.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Cortes-Guiral D, Elias D, Cascales-Campos PA, et al. Second-look surgery plus hyperthermic intraperitoneal chemotherapy for patients with colorectal cancer at high risk of peritoneal carcinomatosis: does it really save lives. World J Gastroenterol. 2017;23:377–81.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gennaro Galizia
    • 1
    Email author
  • Andrea Mabilia
    • 2
  • Francesca Cardella
    • 2
  • Annamaria Auricchio
    • 2
  • Nicoletta Basile
    • 2
  • Silvia Erario
    • 2
  • Giovanni Del Sorbo
    • 2
  • Paolo Castellano
    • 2
  • Eva Lieto
    • 2
  1. 1.Department of Translational Medical Sciences, Division of Surgical Oncology of the Gastrointestinal Tract, University of Campania ‘Luigi Vanvitelli’ – School of MedicineNaplesItaly
  2. 2.Division of Surgical Oncology of the Gastrointestinal TractUniversity of Campania “Luigi Vanvitelli”NaplesItaly

Personalised recommendations