Advertisement

Prediction of Maximum Torsional Wheel-Set Axle Vibrations Considering Non-linear Adhesion Characteristics

  • Alexander MeierhoferEmail author
  • Christof Bernsteiner
  • Gabor Müller
  • Florian Semrad
  • Franz-Josef Weber
  • Martin Rosenberger
  • Klaus Six
Conference paper
  • 7 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Self-excited torsional wheel-set axle vibrations can lead to polygonization of wheels, cause discomfort for the passengers, and can lead to issues with the stability of the press-fit between wheel and wheel-set. To predict their amplitude, three different methods were investigated: a time-simulation for reference, an energy-method, and the 2cx-hypothesis. It was found that the 2cx-hypothesis shows significant deviations. The energy-method is very accurate (deviations smaller than 0.5%) while still significantly faster than the time-simulation. Thus, the energy method is a viable alternative to predict the amplitude of these vibrations.

Keywords

Torsional vibrations Drive-train oscillations Creep force Surface conditions 

Notes

Acknowledgements

The authors would like to acknowledge the financial support of the COMET K2 – Competence Centers for Excellent Technologies Programme of the Federal Ministry for Transport, Innovation and Technology (bmvit), the Federal Ministry for Digital, Business and Enterprise (bmdw), the Austrian Research Promotion Agency (FFG), the Province of Styria and the Styrian Business Promotion Agency (SFG).

References

  1. 1.
    Nielsen, J.C.O., Johansson, A.: Out-of-round railway wheels-a literature survey. Part F: J. Rail Rapid Transit 214(2), 79–91 (2000). Proceedings of the Institution of Mechanical EngineersGoogle Scholar
  2. 2.
    Fröhling, R., Spangenberg, U., Reitmann, E.: Locomotive wheel tread polygonisation caused by torsional axle shaft vibration. In: Li, Z., Nunez, A. (eds.) Proceedings of the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems (CM2018), pp. 261–270 (2018)Google Scholar
  3. 3.
    Weber, F.-J.: Auf der suche nach dem maximalen radsatzwellen-torsionsmoment. ZEVrail Glasers Annalen 138, 176–180 (2014)Google Scholar
  4. 4.
    Yu, M., Breuer, W.: Energie-methode zur vorhersage von kraftschlussinduzierten eigenschwingungen von rad-satzwellen. In: Tagungsband der 16. International Schienefahrzeugtagung Dresden, p. 42. Eurailpress (2018)Google Scholar
  5. 5.
    Meierhofer, A.: A new Wheel-Rail Creep Force Model based on Elasto-Plastic Third Body Layers. Ph.D. thesis, Graz University of Technology (2015)Google Scholar
  6. 6.
    Meierhofer, A., Müller, G., Six, K., Dietmaier, P.: A wheel-rail creep force model considering normal stress and temperature dependent plasticity effects. In: Proceedings of 24th Symposium of the International Association for Vehicle System Dynamics (IAVSD 2015)Google Scholar
  7. 7.
    Trummer, G., Buckley-Johnstone, L., Voltr, P., Meierhofer, A., Lewis, R., Six, K.: Wheel-rail creep force model for predicting water induced low adhesion phenomena. Tribol. Int. 109, 409–415 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alexander Meierhofer
    • 1
    Email author
  • Christof Bernsteiner
    • 1
  • Gabor Müller
    • 1
  • Florian Semrad
    • 2
  • Franz-Josef Weber
    • 2
  • Martin Rosenberger
    • 2
  • Klaus Six
    • 1
  1. 1.Virtual VehicleGrazAustria
  2. 2.Siemens Mobility GmbHGrazAustria

Personalised recommendations