Skip to main content

Thermochemical Characterization of Biomass Residues and Wastes for Bioenergy

  • Chapter
  • First Online:
Valorization of Biomass to Value-Added Commodities

Part of the book series: Green Energy and Technology ((GREEN))

  • 726 Accesses

Abstract

Biomass residues from plants and animal sources have been considered as organic materials useful for bioenergy production. The characteristics of a particular biomass sample are part of the factors that influence the properties of the resultant products used for bioenergy purpose. The choice of biomass feedstock and its suitable characterization method is therefore an important prerequisite step towards the determination of biomass fitness for thermal conversion methods. Biomass waste resources can be characterized using various techniques such as proximate, compositional, ultimate and thermogravimetric analyses. Important biomass characteristics include moisture content, volatile matter and ash content for proximate analysis while ultimate analysis provides information on elemental composition of the biomass. The compositional analysis involves the determination of the neutral detergent fibre (NDF), acid detergent fibre (ADF) and acid detergent lignin (ADL) contents of the biomass for estimating the hemicellulose, cellulose and lignin contents of the biomass. Thermogravimetric analysis is used to determine the kinetic parameter of samples under different conditions. New evolving biomass characterization methods and analytical techniques are discussed including current trends, results, challenges and future outlook The evolving methods and analytical techniques are motivated by the need for efficient high-throughput methods to analyse biomass for thermochemical conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Akhator, A. Obanor, A. Ugege, Nigerian wood waste: a potential resource. J. Appl. Sci. Environ. Manage. 21(2), 246–251 (2017)

    Google Scholar 

  2. J.F. Beecher, C.G. Hunt, J.Y. Zhu, Tools for the characterization of biomass at the nanometer scale, in The Nanoscience and Technology of Renewable Biomaterials, ed. by L. A. Lucia, O. J. Rojas, (Wiley, West Sussex, 2009), pp. 61–90

    Chapter  Google Scholar 

  3. T.G. Bridgeman, L.I. Darvell, J.M. Jones, P.T. Williams, R. Fahmi, A.V. Bridgwater, T. Barraclough, I. Shield, N. Yates, S.C. Thain, I.S. Donnison, Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86, 60–72 (2007)

    Article  Google Scholar 

  4. R.C. Brown, Biorenewable resources: engineering new products from agriculture. Renew. Sust. Energ. Rev. 1(1), 59–72 (2003)

    MathSciNet  Google Scholar 

  5. J. Cai, Y. He, X. Yu, S.W. Banks, Y. Yang, X. Zhang, Y. Yu, R. Liu, A. Bridgwater, Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew. Sust. Energ. Rev. 76, 309–322 (2017)

    Article  Google Scholar 

  6. M. Carrier, A. Loppinet-Serani, D. Denux, J. Lasnier, F. Ham-Pichavant, F. Cansell, C. Aymonier, Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass. Bioenerg. 35(1), 298–307 (2011)

    Article  Google Scholar 

  7. S.R. Decker, A.E. Harman-Ware, R.M. Happs, E.J. Wolfrum, G.A. Tuskan, D. Kainer, G.B. Oguntimein, M. Rodriguez, D. Weihill, P. Jones, D. Jacobson, High throughput screening technologies in biomass characterization. Front. Energ Res. 6, 120 (2018). https://doi.org/10.3389/fenrg.2018.00120. Accessed 14 Feb 2019

    Article  Google Scholar 

  8. M. Foston, A.J. Ragauskas, Biomass characterization: recent progress in understanding biomass recalcitrance. Ind. Biotechnol. 8(4), 191–208 (2012). https://doi.org/10.1089/ind.2012.0015. Accessed 15 Nov 2018

    Article  Google Scholar 

  9. R. Garcia, C. Pizarro, A.G. Lavin, J.L. Bueno, Characterization of Spanish biomass waste for energy use. Bioresour. Technol. 103, 249–258 (2012)

    Article  Google Scholar 

  10. P. Ghetti, L. Ricca, L. Angelini, Thermal analysis of biomass and corresponding pyrolysis products. Fuel 75(5), 565–573 (1996)

    Article  Google Scholar 

  11. H.B. Goyal, D. Seal, R.C. Saxena, Bio-fuels from thermochemical conversion of renewable resources: a review. Renew. Sust. Energ. Rev. 12(2), 504–517 (2008)

    Article  Google Scholar 

  12. C.E. Greenhalf, D.J. Nowakowski, A.V. Bridgwater, J. Titiloye, N. Yates, A. Richie, I. Shield, Thermochemical characterisation of straws and high yielding perennial grasses. Ind. Crop. Prod. 36, 449–459 (2012)

    Article  Google Scholar 

  13. S.K. Khanal, R.Y. Surampalli, T.C. Zhang, B.P. Lamsal, R.D. Tyagi, C.M. Kao, Bioenergy and Biofuel from Biowastes and Biomass (American Society of Civil Engineers Publishers, Reston, 2010), pp. 190–197

    Google Scholar 

  14. H. Kominko, K. Gorazda, Z. Wzorek, K. Wojtas, Sustainable management of sewage sludge for the production of organo-mineral fertilizers. Waste Biomass. Valori. 9, 1817–1826 (2018)

    Article  Google Scholar 

  15. J. Lupoi, B. Simmons, R. Henry, Editorial: biomass modification, characterization, and process monitoring analytics to support biofuel and biomaterial production. Front Bioeng. Biotech. 4, 25 (2016). Available via https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4785235/. Accessed 14 Feb 2019

    Article  Google Scholar 

  16. P. McKendry, Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83, 37–46 (2002)

    Article  Google Scholar 

  17. T.E. Odetoye, K.R. Onifade, M.S. AbuBakar, J.O. Titiloye, Pyrolysis of Parinari polyandra Benth fruit shell for bio-oil production. Biofuel. Res. J. 1(3), 85–90 (2014)

    Article  Google Scholar 

  18. T.E. Odetoye, M.S. AbuBarkar, J.O. Titiloye, Thermochemical characterization of Nigerian Jatropha curcas fruit and seed residues for biofuel production. Energ. Ecol. Environ. 3(6), 330–337 (2018)

    Article  Google Scholar 

  19. R. Omar, A. Idris, R. Yunus, K. Khalid, M.I. Isma, Characterization of empty fruit bunch for microwave–assisted pyrolysis. Fuel 90, 1536–1544 (2011)

    Article  Google Scholar 

  20. C.S. Park, R. Sarothi, S.H. Kim, Current Developments in thermochemical conversion of biomass to fuels and chemicals. (2018), Available via https://www.intechopen.com/books/gasification-for-low-grade-feedstock/current-developments-in-thermochemical-conversion-of-biomass-to-fuels-and-chemicals. Accessed 14 Feb 2019

  21. S. Pattathil, U. Avci, T. Zhang, C.L. Cardenas, M.G. Hahn, Immunological approaches to biomass characterization and utilization. Front Bioeng. Biotech. 4, 25 (2015)

    Google Scholar 

  22. A. Pattiya, J.O. Titiloye, A.V. Bridgwater, Fast pyrolysis of cassava rhizome in the presence of catalysts. J. Anal. Appl. Pyrol. 81, 72–79 (2008)

    Article  Google Scholar 

  23. J. Pulka, P. Manczarski, J.A. Koziel, A. Białowiec, Torrefaction of sewage sludge: kinetics and fuel properties of biochars. Energies 12(3), 565 (2019)

    Article  Google Scholar 

  24. R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, S. Mekhilef, A review on biomass as a fuel for boilers. Renew. Sust. Energ. Rev. 15, 2262–2289 (2011)

    Article  Google Scholar 

  25. L. Sanchez-silva, D. Lopez-Gonzalez, J. Villasenor, P. Sanchez, J.L. Valverde, Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour. Technol. 109, 163–172 (2012)

    Article  Google Scholar 

  26. Z. Sebestyén, F. Lezsovits, E. Jakab, G. Várhegyi, Correlation between heating values and thermogravimetric data of sewage sludge, herbaceous crops and wood samples. J. Therm. Anal. Calorim. 110, 1501–1509 (2012)

    Article  Google Scholar 

  27. P. Tanger, J. Field, C.E. Jahn, M.W. DeFoort, J.E. Leach, Biomass for thermochemical conversion: targets and challenges. Front Plant. Sci. 4, 218 (2013). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3697057/. Accessed 14 Feb 2019

    Article  Google Scholar 

  28. J.O. Titiloye, M.S. AbuBarkar, T.E. Odetoye, Thermochemical characterisation of agricultural wastes from West Africa. Ind. Crop. Prod. 47, 199–203 (2013)

    Article  Google Scholar 

  29. M. Kratzeisen, J.Müller, Energy from seed shells of Jatropha curcas, Landtechnik 64 (6) 391–393 (2009)

    Google Scholar 

  30. R. Manurung, R.D.A.Z. Wever, J. Wildschut, R.H. Venderbosch, H. Hidayat, J.E.G. van Dam, E.J. Leijenhorst, A.A. Broekhuis , H.J. Heeresa, Valorisation of Jatropha curcas L. plant parts: Nut shell conversion to fast pyrolysis oil, Food Bioproduct Proc. 87,187–196 (2009)

    Google Scholar 

  31. K. Murata, P. Somwongsa, S. Larkiattaworn, Y. Liu, M. Inaba, I. Takahara Analyses of liquid products from catalytic pyrolysis of jatropha seed cakes. Energy Fuels. 25, 5429–5437 (2011)

    Google Scholar 

  32. V. Sricharoenchaikul, D. Atong, Thermal decomposition study on Jatropha curcas L. waste using TGA and fixed bed reactor. J Anal. Appl. Pyrol. 85, 155–162 (2009)

    Google Scholar 

  33. D.A.Z. Wever, H.J. Heeres, A.A. Broekhuis, Characterization of physic nut (Jatropha curcas L.) shells. Biomass Bioenerg. 37,177–187 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Odetoye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Odetoye, T.E., Ibarhiam, S.F., Titiloye, J.O. (2020). Thermochemical Characterization of Biomass Residues and Wastes for Bioenergy. In: Daramola, M., Ayeni, A. (eds) Valorization of Biomass to Value-Added Commodities. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38032-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38031-1

  • Online ISBN: 978-3-030-38032-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics