Advertisement

Imagination in Science

  • Luana PoliseliEmail author
  • Charbel N. El-Hani
Chapter
  • 17 Downloads
Part of the SpringerBriefs in Psychology book series (BRIEFSPSYCHOL)

Abstract

This chapter comments on the book from the perspective of the developments in philosophy of science and intercultural communication. It raises a number of issues to be further discussed in order to continue inquiry into Tateo’s approach. It discusses how imaginative processes are engaged in modeling work in science. It also shows how, facing the environmental challenges that require an innovative thinking, relational empathy can play a rather important role in co-construction of knowledge and understanding through transdisciplinary processes.

Keywords

Imaginative processes Scientific models Pragmatic views Rational empathy 

Notes

Acknowledgments

Luana Poliseli is grateful for the doctoral grant conceived by the Brazilian Coordination for Improvement of Higher Personnel (CAPES, Finance Code 001) and for the interuniversity exchange financial support conceived by the Interuniversity Exchange Program (PDSE, Process n. {88881.123457/2016-01}). Charbel N. El-Hani thanks the Brazilian National Council for Scientific and Technological Development (CNPq) for Productivity in Research Grant (n. 303011/2017-3) and for support to the National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE) (n. 465767/2014-1). And, for support to INCT IN-TREE, he also thanks the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) (n. 23038.000776/2017-54).

References

  1. Agrawal, A. (1995). Dismantling the divide between indigenous and scientific knowledge. Dev. Chang., 26(3), 413–439.CrossRefGoogle Scholar
  2. Anderson, E. N. (1996). Ecologies of the heart: Emotion, belief, and the environment. Oxford: Oxford University Press.Google Scholar
  3. Bailer-Jones, D. M. (1999). Tracing the development of models in the philosophy of science. In L. Magnani, N. J. Nersessian, & P. Thagard (Eds.), Model-based reasoning in scientific discovery (pp. 23–40). New York, NY: Kluwer and Plenum.CrossRefGoogle Scholar
  4. Bailer-Jones, D. M. (2009). Scientific models in philosophy of science. Pittsburgh, PA: University of Pittsburgh Press.CrossRefGoogle Scholar
  5. Bennett, M. J. (1979). Overcoming the golden rule: Sympathy and empathy. In D. Nimmo (Ed.), Communication yearbook 3 (pp. 407–422). Beverly Hills, CA: Sage.Google Scholar
  6. Berkes, F. (2012). Sacred ecology. New York, NY: Routledge.CrossRefGoogle Scholar
  7. Boumans, M. (1999). Built-in justifications. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 66–96). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  8. Broome, B. J. (1991). Building shared meaning: Implications of a relational approach to empathy for teaching intercultural communication. Commun. Educ., 40, 235–249.CrossRefGoogle Scholar
  9. Cartwright, N. (1983). How the laws of physics Lie? Oxford: Clarendon.CrossRefGoogle Scholar
  10. Casmir, F. L. (1999). Foundations for the study of intercultural communication based on a third-culture building model. Int. J. Intercult. Relat., 23, 91–11.CrossRefGoogle Scholar
  11. Davidson, D. (1984). Inquiries into truth & interpretation. Oxford: Clarendon.Google Scholar
  12. De Regt, H. W. (2017). Understanding scientific understanding. Oxford: Oxford University Press.CrossRefGoogle Scholar
  13. DeTurk, S. (2001). Intercultural empathy: Myth, competency, or possibility for alliance building? Commun. Educ., 50(4), 374–384.CrossRefGoogle Scholar
  14. Gavin, M. C., McCarter, J., Mead, A., Berkes, F., Stepp, J. R., Peterson, D., & Tang, R. (2015). Defining biocultural approaches to conservation. Trends Ecol. Evol., 30(3), 140–145.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gergen, K. (1985). The social constructionist movement in modern psychology. Am. Psychol., 40, 266–275.CrossRefGoogle Scholar
  16. Giere, R. N. (1988). Explaining science: A cognitive approach. Chicago, IL/London, UK: University of Chicago Press.CrossRefGoogle Scholar
  17. Giere, R. N. (2004). How models are used to represent reality. Philos. Sci., 71, 742–752.CrossRefGoogle Scholar
  18. Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Dordrecht: Springer.CrossRefGoogle Scholar
  19. Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.CrossRefGoogle Scholar
  20. Greco, J. (2014). Episteme: Knowledge and understanding. In K. Timpe & C. A. Boyd (Eds.), Virtues and their vices (pp. 285–302). Oxford: Oxford University Press.Google Scholar
  21. Hunn, E. (2014). To know them is to love them. Ethnobiology Letters, 5, 146–150.CrossRefGoogle Scholar
  22. Hutchison, A. (2014). The Whanganui river as a legal person. Alternative Law Journal, 39(3), 179–182.CrossRefGoogle Scholar
  23. Kelly, T. (2016). Evidence. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/evidence/. Accessed October 13th 2019.Google Scholar
  24. Kim, J. (1996). Philosophy of mind. Boulder, CO: Westview Press.Google Scholar
  25. Knuuttila, T. (2005a). Models as epistemic artefacts: Toward a non-representationalist account of scientific representation. [Ph.D. Thesis]. Helsinki: University of Helsinki.Google Scholar
  26. Knuuttila, T. (2005b). Models, representation, and mediation. Philos. Sci., 72(5), 1260–1271.CrossRefGoogle Scholar
  27. Knuuttila, T. (2011). Modelling and representing: An artefactual approach to model-based representation. Stud. Hist. Phil. Sci., 42(2), 262–272.CrossRefGoogle Scholar
  28. Knuuttila, T., & Voutilainen, A. (2003). A parser as an epistemic artifact: A material view on models. Philos. Sci., 70(5), 1484–1495.CrossRefGoogle Scholar
  29. Kohn, E. (2013). How forests think. Berkeley, CA: University of California Press.CrossRefGoogle Scholar
  30. Kopf, D. W., & Park, M.-S. (1984). Cross-cultural communication: An introduction to the fundamentals. Seoul: Han Shin Publishing Co..Google Scholar
  31. Kvanvig, J. L. (2003). The value of knowledge and the pursuit of understanding: The gettier problem and the value of knowledge. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  32. Lapoujade, M. N. (1988). Filosofía de la imaginación. In Cerro del Agua. Mexico: Siglo XXI.Google Scholar
  33. Ludwig, D. (2016). Overlapping ontologies and indigenous knowledge. Studies in History and Philosophy of Science Part A, 59, 36–45.CrossRefGoogle Scholar
  34. Ludwig, D., & El-Hani, C. N. (in press). Philosophy of ethnobiology: Understanding knowledge integration and its limitations. J. Ethnobiol.Google Scholar
  35. McAllister, J. W. (2012). Thought experiment and the exercise of imagination in science. In M. Frappier, L. Meynell, & J. R. Brown (Eds.), Thought experiments in philosophy, science, and the arts (pp. 11–29). London: Routledge.Google Scholar
  36. Mitteroecker, P., & Huttegger, S. M. (2009). The concept of morphospaces in evolutionary and developmental biology: Mathematics and metaphors. Biol. Theory, 4(1), 54–67.CrossRefGoogle Scholar
  37. Morrison, M. (2007). Where have all the theories gone? Philos. Sci., 74(2), 195–228.CrossRefGoogle Scholar
  38. Morrison, M., & Morgan, M. S. (1999). Models as mediating instruments. In M. S. Morgan & M. Morrison (Eds.), Models as mediators: Perspectives on natural and social science (pp. 10–37). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  39. Nadasdy, P. (1999). The politics of TEK. Power and the ‘integration’ of knowledge. Arct. Anthropol., 36, 1–18.Google Scholar
  40. Nadasdy, P. (2005). The anti-politics of TEK. Anthropologica, 47, 215–232.Google Scholar
  41. Poliseli, L. (2018). When ecology and philosophy meet: Constructing explanations and assessing understanding in scientific practice. [Ph.D. thesis]. Salvador, Brazil: Federal University of Bahia/State University of Feira de Santana, Graduate Studies Program in History, Philosophy and Science Teaching.Google Scholar
  42. Poliseli, L. (2019). Scientific understanding in the context of ongoing practices: From – what to – how. Manuscript submitted to Studies in History and Philosophy of Science, Part A.Google Scholar
  43. Poliseli, L., Coutinho, J. G., E., Viana, B., Russo, F., & El-Hani, C. N. (2019). Mechanistic explanations for modeling practices in biology. Manuscript in preparation.Google Scholar
  44. Pritchard, D. (2009). Knowledge, understanding and epistemic value. Royal Institute of Philosophy Supplements, 64, 19–43.CrossRefGoogle Scholar
  45. Putnam, H. (1981). Reason, truth and history. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Rist, S., & Dahdouh-Guebas, F. (2006). Ethnosciences––A step towards the integration of scientific and indigenous forms of knowledge in the management of natural resources for the future. Environ. Dev. Sustain., 8, 467–493.CrossRefGoogle Scholar
  47. Schnellert, L. M., Butler, D. L., Stephanie, K., & Higginson, S. K. (2008). Co-constructors of data, co-constructors of meaning: Teacher professional development in an age of accountability. Teach. Teach. Educ., 24, 725–750.CrossRefGoogle Scholar
  48. Sepper, D. L. (2013). Understanding imagination. Dordrecht: Springer.CrossRefGoogle Scholar
  49. Stevenson, L. (2003). Twelve conceptions of imagination. The British Journal of Aesthetics, 43(3), 238–259.CrossRefGoogle Scholar
  50. Suppe, F. (1989). The semantic conception of theories and scientific realism. Urbana, IL: University of Illinois Press.Google Scholar
  51. Tateo, L. (2015). The nature of generalization in psychology. In G. Marsico, R. Andrisano Ruggieri, & S. Salvatore (Eds.), Reflexivity and psychology (pp. 45–64). Charlotte, NC: Information Age Publishing.Google Scholar
  52. Tateo, L. (2016). What imagination can teach us about higher mental functions. In J. Valsiner, G. Marsico, N. Chaudhary, T. Sato, & V. Dazzani (Eds.), Psychology as the science of human being: The yokohama manifesto (pp. 149–164). New York, NY: Springer.CrossRefGoogle Scholar
  53. Valsiner, J. (1994). Bidirectional cultural transmission and constructive sociogenesis. In W. de Graaf & R. Maier (Eds.), Sociogenesis reexamined (pp. 47–70). New York, NY: Springer.CrossRefGoogle Scholar
  54. van Fraassen, B. (1980). The scientific image. Oxford: Oxford University Press.CrossRefGoogle Scholar
  55. Vygotsky, L. S. (2004). Imagination and creativity in childhood. Journal of Russian and East European Psychology, 42(1), 7–97.CrossRefGoogle Scholar
  56. Wilson, S. (2008). Research Is ceremony: Indigenous research methods. Halifax: Fernwood Publishing.Google Scholar
  57. Winther, R. G. (2016). The structure of scientific theories. In E. N. Zalta (ed), The Stanford encyclopedia of philosophy (Winter 2016 Edition). https://plato.stanford.edu/archives/win2016/entries/structure-scientific-theories/. Accessed October 13th 2019
  58. Wolverton, S., Nolan, J. M., & Ahmed, W. (2014). Ethnobiology, political ecology, and conservation. J. Ethnobiol., 34(2), 125–153.CrossRefGoogle Scholar
  59. Wolverton, S., Figueroa, R. M., & Swentzell, P. (2016). Archaeology, heritage, and moral terrains: Two cases from the Mesa Verde region. Ethnobiol Lett, 7(2), 23–31.CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Federal University of BahiaSalvadorBrazil

Personalised recommendations