Sperm DNA Fragmentation and Male Infertility

  • Manesh Kumar Panner Selvam
  • Pallav Sengupta
  • Ashok AgarwalEmail author


Sperm DNA fragmentation (SDF) is associated with male infertility, and it adversely affects reproductive outcomes. Both chromatin integrity and protamination status determine the extent of DNA damage. Oxidative stress due to increased levels of reactive oxygen species in the seminal fluid damages sperm DNA. Several tests have been introduced into the clinical laboratory settings to assess the sperm chromatin integrity and the extent of SDF. This chapter elucidates the molecular changes, specifically proteomic alterations, caused due to SDF. Moreover, the factors affecting sperm DNA integrity and the consequences of increased SDF are highlighted. It also focusses on the importance of SDF testing and its impact on reproductive outcomes.


Sperm  Sperm DNA fragmentation  Semen proteomics  TUNEL assay 


  1. 1.
    Fleming S, Green S, Hall J, Hunter A. Analysis and alleviation of male infertility. Microsc Anal. 1995;45:35–7.Google Scholar
  2. 2.
    Neri Q, Tanaka N, Wang A, Katagiri Y, Takeuchi T, Rosenwaks Z, et al. Intracytoplasmic sperm injection. Minerva Ginecol. 2004;56:189–96.PubMedGoogle Scholar
  3. 3.
    Al Omrani B, Al Eisa N, Javed M, Al Ghedan M, Al Matrafi H, Al Sufyan H. Associations of sperm DNA fragmentation with lifestyle factors and semen parameters of Saudi men and its impact on ICSI outcome. Reprod Biol Endocrinol. 2018;16(1):49.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    González-Marín C, Gosálvez J, Roy R. Types, causes, detection and repair of DNA fragmentation in animal and human sperm cells. Int J Mol Sci. 2012;13(11):14026–52.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Jarrow J, Sigman M, Kolettis PN, Lipshultz LR, McClure RD, et al. Optimal evaluation of the infertile male. AUA best practice statement reviewed and validity confirmed. 2011.Google Scholar
  6. 6.
    Male infertility. EAU guidelines [Internet]. 2017 [cited September, 2018]. Available from:
  7. 7.
    Conwell CC, Vilfan ID, Hud NV. Controlling the size of nanoscale toroidal DNA condensates with static curvature and ionic strength. Proc Natl Acad Sci. 2003;100(16):9296–301.PubMedCrossRefGoogle Scholar
  8. 8.
    Simon L, Aston K, Emery B, Hotaling J, Carrell D. Sperm DNA damage output parameters measured by the alkaline comet assay and their importance. Andrologia. 2017;49(2):e12608.CrossRefGoogle Scholar
  9. 9.
    Simon L, Murphy K, Shamsi M, Liu L, Emery B, Aston K, et al. Paternal influence of sperm DNA integrity on early embryonic development. Hum Reprod. 2014;29(11):2402–12.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2009;16(1):30–6.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2006;75(3):442–51.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Page AW, Orr-Weaver TL. Stopping and starting the meiotic cell cycle. Curr Opin Genet Dev. 1997;7(1):23–31.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A. Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl. 2006;8(1):11–29.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Laberge R-M, Boissonneault G. On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod. 2005;73(2):289–96.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J. Comparative study of cytochemical tests for sperm chromatin integrity. J Androl. 2001;22(1):45–53.PubMedPubMedCentralGoogle Scholar
  16. 16.
    González-Rojo S, Fernández-Díez C, Guerra SM, Robles V, Herraez MP. Differential gene susceptibility to sperm DNA damage: analysis of developmental key genes in trout. PLoS One. 2014;9(12):e114161.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Gunes S, Al-Sadaan M, Agarwal A. Spermatogenesis, DNA damage and DNA repair mechanisms in male infertility. Reprod Biomed Online. 2015;31(3):309–19.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ahmad G, Agarwal A. Ionizing radiation and male fertility. In: Male infertility: Springer, New Delhi; 2017. p. 185–96.Google Scholar
  19. 19.
    Henkel R, Kierspel E, Stalf T, Mehnert C, Menkveld R, Tinneberg H-R, et al. Effect of reactive oxygen species produced by spermatozoa and leukocytes on sperm functions in non-leukocytospermic patients. Fertil Steril. 2005;83(3):635–42.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7.PubMedCrossRefGoogle Scholar
  21. 21.
    Sakkas D, Manicardi G, Grace Bianchi P, Bizzaro D, Bianchi U. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod. 1995;52(5):1149–55.PubMedCrossRefGoogle Scholar
  22. 22.
    Esteves SC, Sánchez-Martín F, Sánchez-Martín P, Schneider DT, Gosálvez J. Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm. Fertil Steril. 2015;104(6):1398–405.PubMedCrossRefGoogle Scholar
  23. 23.
    John Aitken R, Clarkson JS, Fishel S. Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod. 1989;41(1):183–97.CrossRefGoogle Scholar
  24. 24.
    Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int. 2008;101(12):1547–52.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Hamada A, Esteves SC, Agarwal A. Insight into oxidative stress in varicocele-associated male infertility: part 2. Nat Rev Urol. 2013;10(1):26–37.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Wang Y-J, Zhang R-Q, Lin Y-J, Zhang R-G, Zhang W-L. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25(3):307–14.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KHM, et al. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112(6):835–43.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KHM, et al. Unraveling the sperm proteome and post-genomic pathways associated with sperm nuclear DNA fragmentation. J Assist Reprod Genet. 2013;30(9):1187–202.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Skowronek F, Casanova G, Alciaturi J, Capurro A, Cantu L, Montes JM, et al. DNA sperm damage correlates with nuclear ultrastructural sperm defects in teratozoospermic men. Andrologia. 2012;44(1):59–65.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Puga Molina LC, Luque GM, Balestrini PA, Marín-Briggiler CI, Romarowski A, Buffone MG. Molecular basis of human sperm capacitation. Front Cell Dev Biol. 2018;6:72.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Guraya SS. Cellular and molecular biology of capacitation and acrosome reaction in spermatozoa. Int Rev Cytol. 2000;199:1–64.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Intasqui P, Camargo M, Del Giudice PT, Spaine DM, Carvalho VM, Cardozo KH, et al. Sperm nuclear DNA fragmentation rate is associated with differential protein expression and enriched functions in human seminal plasma. BJU Int. 2013;112(6):835–43.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Behrouzi B, Kenigsberg S, Alladin N, Swanson S, Zicherman J, Hong S-H, et al. Evaluation of potential protein biomarkers in patients with high sperm DNA damage. Syst Biol Reprod Med. 2013;59(3):153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Intasqui P, Camargo M, Antoniassi MP, Cedenho AP, Carvalho VM, Cardozo KHM, et al. Association between the seminal plasma proteome and sperm functional traits. Fertil Steril. 2016;105(3):617–28.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Antoniassi MP, Intasqui P, Camargo M, Zylbersztejn DS, Carvalho VM, Cardozo KH, et al. Analysis of the functional aspects and seminal plasma proteomic profile of sperm from smokers. BJU Int. 2016;118(5):814–22.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Sharma R, Agarwal A, Mohanty G, Du Plessis SS, Gopalan B, Willard B, et al. Proteomic analysis of seminal fluid from men exhibiting oxidative stress. Reprod Biol Endocrinol. 2013;11:85.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Cho C-L, Agarwal A. Role of sperm DNA fragmentation in male factor infertility: a systematic review. Arab J Urol. 2018;16(1):21–34.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Saleh RA, Agarwal A, Nada EA, El-Tonsy MH, Sharma RK, Meyer A, et al. Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril. 2003;79:1597–605.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 2003;79(4):829–43.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi P, Shoukir Y, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13(suppl_4):11–9.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91(4):1077–84.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Avendaño C, Franchi A, Duran H, Oehninger S. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94(2):549–57.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Saleh RA, Agarwal A, Nelson DR, Nada EA, El-Tonsy MH, Alvarez JG, et al. Increased sperm nuclear DNA damage in normozoospermic infertile men: a prospective study. Fertil Steril. 2002;78(2):313–8.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Agarwal A, Cho C-L, Majzoub A, Esteves SC. The role of female factors in the management of sperm DNA fragmentation. Transl Androl Urol. 2017;6(Suppl 4):S488.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Engel W, Sancken U, Laccone F. Paternal age from a genetic point of view. J Reproduktionsmed Endokrinol. 2004;1:263–7.Google Scholar
  46. 46.
    Alshahrani S, Agarwal A, Assidi M, Abuzenadah AM, Durairajanayagam D, Ayaz A, et al. Infertile men older than 40 years are at higher risk of sperm DNA damage. Reprod Biol Endocrinol. 2014;12(1):103.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Winkle T, Rosenbusch B, Gagsteiger F, Paiss T, Zoller N. The correlation between male age, sperm quality and sperm DNA fragmentation in 320 men attending a fertility center. J Assist Reprod Genet. 2009;26(1):41–6.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Brahem S, Mehdi M, Elghezal H, Saad A. The effects of male aging on semen quality, sperm DNA fragmentation and chromosomal abnormalities in an infertile population. J Assist Reprod Genet. 2011;28(5):425–32.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Luetjens C, Rolf C, Gassner P, Werny J, Nieschlag E. Sperm aneuploidy rates in younger and older men. Hum Reprod. 2002;17(7):1826–32.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med. 1996;74(6):297–312.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Agarwal A, Sengupta P, Durairajanayagam D. Role of L-carnitine in female infertility. Reprod Biol Endocrinol. 2018;16(1):5.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. Int J Reprod Biomed. 2016;14(12):729.CrossRefGoogle Scholar
  53. 53.
    Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J. Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl. 2005;26(3):349–53.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Cui X, Jing X, Wu X, Wang Z, Li Q. Potential effect of smoking on semen quality through DNA damage and the downregulation of Chk1 in sperm. Mol Med Rep. 2016;14(1):753–61.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Akang EN, Oremosu AA, Osinubi AA, James AB, Biose IJ, Dike SI, et al. Alcohol-induced male infertility: is sperm DNA fragmentation a causative? J Exp Clin Anatomy. 2017;16(1):53.Google Scholar
  56. 56.
    Anifandis G, Bounartzi T, Messini C, Dafopoulos K, Sotiriou S, Messinis I. The impact of cigarette smoking and alcohol consumption on sperm parameters and sperm DNA fragmentation (SDF) measured by Halosperm®. Arch Gynecol Obstet. 2014;290(4):777–82.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    De Iuliis GN, Thomson LK, Mitchell LA, Finnie JM, Koppers AJ, Hedges A, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2′-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Mitchell L, De Iuliis G, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34(1):2–13.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Dupont C, Faure C, Sermondade N, Boubaya M, Eustache F, Clément P, et al. Obesity leads to higher risk of sperm DNA damage in infertile patients. Asian J Androl. 2013;15(5):622.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Bakos H, Mitchell M, Setchell B, Lane M. The effect of paternal diet‐induced obesity on sperm function and fertilization in a mouse model. Int J Androl. 2011;34(5pt1):402–10.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis. 2012;2(4):253–63.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Sengupta P. Environmental and occupational exposure of metals and their role in male reproductive functions. Drug Chem Toxicol. 2013;36(3):353–68.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Sengupta P, Banerjee R. Environmental toxins: alarming impacts of pesticides on male fertility. Hum Exp Toxicol. 2014;33(10):1017–39.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Jeng HA. Exposure to endocrine disrupting chemicals and male reproductive health. Front Public Health. 2014;2:55.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Evenson DP, Wixon R. Environmental toxicants cause sperm DNA fragmentation as detected by the Sperm Chromatin Structure Assay (SCSA®). Toxicol Appl Pharmacol. 2005;207(2):532–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Morris ID. Sperm DNA damage and cancer treatment 1. Int J Androl. 2002;25(5):255–61.PubMedCrossRefGoogle Scholar
  68. 68.
    Smit M, Van Casteren N, Wildhagen M, Romijn J, Dohle G. Sperm DNA integrity in cancer patients before and after cytotoxic treatment. Hum Reprod. 2010;25(8):1877–83.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Ochsendorf F. Infections in the male genital tract and reactive oxygen species. Hum Reprod Update. 1999;5(5):399–420.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gallegos G, Ramos B, Santiso R, Goyanes V, Gosálvez J, Fernández JL. Sperm DNA fragmentation in infertile men with genitourinary infection by chlamydia trachomatis and mycoplasma. Fertil Steril. 2008;90(2):328–34.PubMedCrossRefGoogle Scholar
  71. 71.
    Erenpreiss J, Hlevicka S, Zalkalns J, Erenpreisa J. Effect of leukocytospermia on sperm DNA integrity: a negative effect in abnormal semen samples. J Androl. 2002;23(5):717–23.PubMedGoogle Scholar
  72. 72.
    Majzoub A, Agarwal A, Cho CL, Esteves SC. Sperm DNA fragmentation testing: a cross sectional survey on current practices of fertility specialists. Transl Androl Urol. 2017;6(Suppl 4):S710–9.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    AUGER J, MESBAH M, HUBER C, DADOUNE JP. Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl. 1990;13(6):452–62.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Manicardi GC, Bizzaro D, Basic SD. Clinical aspects of sperm chromomycin A3 assay. In: Zini A, Agarwal A, editors. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. New York: Springer New York; 2011. p. 171–9.CrossRefGoogle Scholar
  75. 75.
    Manicardi GC, Bianchi PG, Pantano S, Azzoni P, Bizzaro D, Bianchi U, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility1. Biol Reprod. 1995;52(4):864–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Sakkas D, Urner F, Bizzaro D, Manicardi G, Bianchi PG, Shoukir Y, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13(suppl_4):11–9.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Evenson DP. The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56–75.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Evenson DP, LARSON KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl. 2002;23(1):25–43.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Evenson DP. Sperm Chromatin Structure Assay (SCSA®): 30 years of experience with the SCSA®. In: Sperm chromatin: Springer, New York, NY; 2011. p. 125–49.CrossRefGoogle Scholar
  80. 80.
    Fernández JL, Muriel L, Goyanes V, Segrelles E, Gosálvez J, Enciso M, et al. Simple determination of human sperm DNA fragmentation with an improved sperm chromatin dispersion test. Fertil Steril. 2005;84(4):833–42.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Fernández JL, Muriel L, Rivero MT, Goyanes V, Vazquez R, Alvarez JG. The sperm chromatin dispersion test: a simple method for the determination of sperm DNA fragmentation. J Androl. 2003;24(1):59–66.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Pratap H, Hottigoudar SY, Nichanahalli KS, Chand P. Assessment of sperm deoxyribose nucleic acid fragmentation using sperm chromatin dispersion assay. J Pharmacol Pharmacother. 2017;8(2):45–9.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123(1):291–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Singh NP, Danner DB, Tice RR, McCoy MT, Collins GD, Schneider EL. Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res. 1989;184(2):461–70.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Sharma R, Masaki J, Agarwal A. Sperm DNA fragmentation analysis using the TUNEL assay. Methods Mol Biol 2013;927:121–36.Google Scholar
  86. 86.
    Gupta S, Sharma R, Agarwal A. Inter‐and intra‐laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Curr Protoc Toxicol. 2017;74(1):16.1. 1-.1. 22.CrossRefGoogle Scholar
  87. 87.
    Mahfouz RZ, Said TM, Agarwal A. The diagnostic and therapeutic applications of flow cytometry in male infertility. Arch Med Sci Spec Issues. 2009;2009(1):108.Google Scholar
  88. 88.
    Sharma R, Cakar Z, Agarwal A. TUNEL assay by benchtop flow cytometer in clinical laboratories. In: A Clinician’s guide to sperm DNA and chromatin damage: Springer, Cham; 2018. p. 103–18.CrossRefGoogle Scholar
  89. 89.
    Sharma RK, Sabanegh E, Mahfouz R, Gupta S, Thiyagarajan A, Agarwal A. TUNEL as a test for sperm DNA damage in the evaluation of male infertility. Urology. 2010;76(6):1380–6.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33(2):291–300.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Ribeiro S, Sharma R, Gupta S, Cakar Z, De Geyter C, Agarwal A. Inter‐and intra‐laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation. Andrology. 2017;5(3):477–85.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Moskovtsev SI, Jarvi K, Mullen JBM, Cadesky KI, Hannam T, Lo KC. Testicular spermatozoa have statistically significantly lower DNA damage compared with ejaculated spermatozoa in patients with unsuccessful oral antioxidant treatment. Fertil Steril. 2010;93(4):1142–6.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Greco E, Scarselli F, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, et al. Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod. 2005;20(1):226–30.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Esteves SC, Agarwal A, Cho C-L, Majzoub A. A Strengths-Weaknesses-Opportunities-Threats (SWOT) analysis on the clinical utility of sperm DNA fragmentation testing in specific male infertility scenarios. Transl Androl Urol. 2017;6(Suppl 4):S734.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Spanò M, Bonde JP, Hjøllund HI, Kolstad HA, Cordelli E, Leter G, et al. Sperm chromatin damage impairs human fertility. Fertil Steril. 2000;73(1):43–50.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Muriel L, Meseguer M, Fernández JL, Alvarez J, Remohí J, Pellicer A, et al. Value of the sperm chromatin dispersion test in predicting pregnancy outcome in intrauterine insemination: a blind prospective study. Hum Reprod. 2005;21(3):738–44.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Duran EH, Morshedi M, Taylor S, Oehninger S. Sperm DNA quality predicts intrauterine insemination outcome: a prospective cohort study. Hum Reprod. 2002;17(12):3122–8.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Rilcheva VS, Ayvazova NP, Ilieva LO, Ivanova SP, Konova EI. Sperm DNA integrity test and assisted reproductive technology (art) outcome. J Biomed Clin Res. 2016;9(1):21–9.CrossRefGoogle Scholar
  99. 99.
    Cissen M, van Wely M, Scholten I, Mansell S, de Bruin JP, Mol BW, et al. Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis. PLoS One. 2016;11(11):e0165125.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Simon L, Brunborg G, Stevenson M, Lutton D, McManus J, Lewis SE. Clinical significance of sperm DNA damage in assisted reproduction outcome. Hum Reprod. 2010;25(7):1594–608.PubMedCrossRefGoogle Scholar
  101. 101.
    Morris ID. Sperm DNA damage and cancer treatment. Int J Androl. 2002;25(5):255–61.PubMedCrossRefGoogle Scholar
  102. 102.
    Virro M, Evenson D. Sperm chromatin structure assay (SCSA®) related to blastocyst rate, pregnancy rate, and spontaneous abortion in IVF and ICSI cycles. Fertil Steril. 2003;79:16.CrossRefGoogle Scholar
  103. 103.
    Mohammad HN-E, Mohammad S, Shahnaz R, Maryam A, Shahla R, Fariba M, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online. 2005;11(2):198–205.CrossRefGoogle Scholar
  104. 104.
    Simon L, Proutski I, Stevenson M, Jennings D, McManus J, Lutton D, et al. Sperm DNA damage has a negative association with live-birth rates after IVF. Reprod Biomed Online. 2013;26(1):68–78.PubMedCrossRefGoogle Scholar
  105. 105.
    Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7.PubMedCrossRefGoogle Scholar
  106. 106.
    Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17.PubMedCrossRefGoogle Scholar
  107. 107.
    Panner Selvam MK, Agarwal A. A systemic review on sperm DNA fragmentation in male factor infertility: laboratory assessment. Arab J Urol. 2018;16(1):65–76.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Manesh Kumar Panner Selvam
    • 1
  • Pallav Sengupta
    • 2
  • Ashok Agarwal
    • 1
    Email author
  1. 1.American Center for Reproductive Medicine, Cleveland ClinicClevelandUSA
  2. 2.Department of Physiology, Faculty of Medicine, Bioscience and NursingMAHSA UniversityJenjarom, SelangorMalaysia

Personalised recommendations