Advertisement

The Potential of CRISPR/Cas Gene Editing to Correct Male Infertility

  • Douglas T. CarrellEmail author
  • Jingtao Guo
  • Kenneth I. Aston
Chapter
  • 70 Downloads

Abstract

Recent advances in CRISPR/Cas technologies have dramatically improved the ease of genome editing and are improving the efficiency, accuracy, and flexibility of editing techniques. Such advances have accelerated the hope that advances in CRISPR/Cas technologies may lead to the clinical usage of gene editing techniques in a broad range of genetic diseases with low risk. Male infertility provides a specific challenge for the use of gene editing, especially given the wide spectrum of genetic variants implicated in male infertility. Despite recent advances in technology, funding, and collaboration, most genetic causes of male infertility remain unknown. Furthermore, evidence points to a broad spectrum of rare variants and possible polygenic causes of the disease. Nevertheless, significant advances are being made in diverse fields, including the identification of novel variants responsible for male infertility, improved understanding of spermatogonial stem cell biology and culture techniques, and advancements in CRISPR/Cas techniques that will open the door to gene and epigenetic therapies with a broadening scope and would improve safety.

Keywords

Gene editing Male infertility Spermatogonial stem cell Homologous recombination Mutation Cell culture Epigenetic 

References

  1. 1.
    Agarwal A, Mulgund A, Hamada A, Chyatte MR. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13:37.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Cannarella R, Condorelli RA, Duca Y, La Vignera S, Calogero AE. New insights into the genetics of spermatogenic failure: a review of the literature. Hum Genet. 2019;Google Scholar
  3. 3.
    Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15(6):369–84.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11):1197–213.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Krausz C, Escamilla AR, Chianese C. Genetics of male infertility: from research to clinic. Reproduction. 2015;150(5):R159–74.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jenkins TG, Aston KI, James ER, Carrell DT. Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications. Syst Biol Reprod Med. 2017;63(2):69–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Szybalska EH, Szybalski W. Genetics of human cess line. IV. DNA-mediated heritable transformation of a biochemical trait. Proc Natl Acad Sci U S A. 1962;48:2026–34.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Prize Announcement: The Nobel Prize in Physiology or Medicine 2007 [press release]. 2007.Google Scholar
  9. 9.
    Conboy I, Murthy N, Etienne J, Robinson Z. Making gene editing a therapeutic reality. F1000Res. 2018;7Google Scholar
  10. 10.
    Kase H, Iwahashi K, Nakanishi S, Matsuda Y, Yamada K, Takahashi M, et al. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem Biophys Res Commun. 1987;142(2):436–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Wu Y, Zhou H, Fan X, Zhang Y, Zhang M, Wang Y, et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015;25(1):67–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Kherraf ZE, Conne B, Amiri-Yekta A, Kent MC, Coutton C, Escoffier J, et al. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility. Mol Cell Endocrinol. 2018;468:70–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Mitchell MJ, Metzler-Guillemain C, Toure A, Coutton C, Arnoult C, Ray PF. Single gene defects leading to sperm quantitative anomalies. Clin Genet. 2017;91(2):208–16.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Aston KI, Conrad DF. A review of genome-wide approaches to study the genetic basis for spermatogenic defects. Methods Mol Biol. 2013;927:397–410.PubMedCrossRefGoogle Scholar
  15. 15.
    Krausz C, Cioppi F, Riera-Escamilla A. Testing for genetic contributions to infertility: potential clinical impact. Expert Rev Mol Diagn. 2018;18(4):331–46.CrossRefGoogle Scholar
  16. 16.
    Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.PubMedCrossRefGoogle Scholar
  17. 17.
    World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.Google Scholar
  18. 18.
    Bjorndahl L. What is normal semen quality? On the use and abuse of reference limits for the interpretation of semen analysis results. Hum Fertil. 2011;14(3):179–86.CrossRefGoogle Scholar
  19. 19.
    De Jonge C. Semen analysis: looking for an upgrade in class. Fertil Steril. 2012;97(2):260–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Oehninger S, Franken DR, Ombelet W. Sperm functional tests. Fertil Steril. 2014;102(6):1528–33.PubMedCrossRefGoogle Scholar
  21. 21.
    Lewis SE, Agbaje I, Alvarez J. Sperm DNA tests as useful adjuncts to semen analysis. Syst Biol Reprod Med. 2008;54(3):111–25.PubMedCrossRefGoogle Scholar
  22. 22.
    Perreault SD, Aitken RJ, Baker HW, Evenson DP, Huszar G, Irvine DS, et al. Integrating new tests of sperm genetic integrity into semen analysis: breakout group discussion. Adv Exp Med Biol. 2003;518:253–68.PubMedCrossRefGoogle Scholar
  23. 23.
    Sigman M, Baazeem A, Zini A. Semen analysis and sperm function assays: what do they mean? Semin Reprod Med. 2009;27(2):115–23.PubMedCrossRefGoogle Scholar
  24. 24.
    Borg CL, Wolski KM, Gibbs GM, O’Bryan MK. Phenotyping male infertility in the mouse: how to get the most out of a ‘non-performer’. Hum Reprod Update. 2009;16(2):205–24.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Klinefelter H, Reifenstein E, Albright F. Syndrome characterized by gynecomastia, aspermatogenesis without a-Leydigism, and increased excretion of follicle-stimulating hormone. J Clin Endocrinol. 1942;2:615–27.CrossRefGoogle Scholar
  26. 26.
    Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm. Hum Genet. 1976;34(2):119–24.CrossRefGoogle Scholar
  27. 27.
    Krausz C, Giachini C. Genetic risk factors in male infertility. Arch Androl. 2007;53(3):125–33.PubMedCrossRefGoogle Scholar
  28. 28.
    Carrell DT, Aston KI. The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility. Syst Biol Reprod Med. 2011;57(1–2):17–26.PubMedCrossRefGoogle Scholar
  29. 29.
    Aston KI, Carrell DT. Genome-wide study of single-nucleotide polymorphisms associated with azoospermia and severe oligozoospermia. J Androl. 2009;30(6):711–25.PubMedCrossRefGoogle Scholar
  30. 30.
    Lopes AM, Aston KI, Thompson E, Carvalho F, Goncalves J, Huang N, et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013;9(3):e1003349.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Tuttelmann F, Simoni M, Kliesch S, Ledig S, Dworniczak B, Wieacker P, et al. Copy number variants in patients with severe oligozoospermia and sertoli-cell-only syndrome. PLoS One. 2011;6(4):e19426.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Krausz C, Giachini C, Lo Giacco D, Daguin F, Chianese C, Ars E, et al. High resolution X chromosome-specific array-CGH detects new CNVs in infertile males. PLoS One. 2012;7(10):e44887.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wilfert AB, Chao KR, Kaushal M, Jain S, Zollner S, Adams DR, et al. Genome-wide significance testing of variation from single case exomes. Nat Genet. 2016;48(12):1455–61.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Okutman O, Rhouma MB, Benkhalifa M, Muller J, Viville S. Genetic evaluation of patients with non-syndromic male infertility. J Assist Reprod Genet. 2018;35(11):1939–51.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Ray PF, Toure A, Metzler-Guillemain C, Mitchell MJ, Arnoult C, Coutton C. Genetic abnormalities leading to qualitative defects of sperm morphology or function. Clin Genet. 2017;91(2):217–32.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, et al. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81(4):813–20.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Koscinski I, Elinati E, Fossard C, Redin C, Muller J, Velez de la Calle J, et al. DPY19L2 deletion as a major cause of globozoospermia. Am J Hum Genet. 2011;88(3):344–50.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Elinati E, Kuentz P, Redin C, Jaber S, Vanden Meerschaut F, Makarian J, et al. Globozoospermia is mainly due to DPY19L2 deletion via non-allelic homologous recombination involving two recombination hotspots. Hum Mol Genet. 2012;21(16):3695–702.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Ben Khelifa M, Coutton C, Zouari R, Karaouzene T, Rendu J, Bidart M, et al. Mutations in DNAH1, which encodes an inner arm heavy chain dynein, lead to male infertility from multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2014;94(1):95–104.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Ben Mustapha SF, Le Tanno P, et al. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun. 2018;9(1):686.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Tang S, Wang X, Li W, Yang X, Li Z, Liu W, et al. Biallelic mutations in CFAP43 and CFAP44 cause male infertility with multiple morphological abnormalities of the sperm flagella. Am J Hum Genet. 2017;100(6):854–64.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ben Khelifa M, Coutton C, Blum MG, Abada F, Harbuz R, Zouari R, et al. Identification of a new recurrent aurora kinase C mutation in both European and African men with macrozoospermia. Hum Reprod. 2012;27(11):3337–46.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Elkhatib RA, Paci M, Longepied G, Saias-Magnan J, Courbiere B, Guichaoua MR, et al. Homozygous deletion of SUN5 in three men with decapitated spermatozoa. Hum Mol Genet. 2017;26(16):3167–71.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet. 2016;99(6):1405.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li L, Sha Y, Wang X, Li P, Wang J, Kee K, et al. Whole-exome sequencing identified a homozygous BRDT mutation in a patient with acephalic spermatozoa. Oncotarget. 2017;8(12):19914–22.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Yatsenko AN, Georgiadis AP, Ropke A, Berman AJ, Jaffe T, Olszewska M, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372(22):2097–107.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Okutman O, Muller J, Baert Y, Serdarogullari M, Gultomruk M, Piton A, et al. Exome sequencing reveals a nonsense mutation in TEX15 causing spermatogenic failure in a Turkish family. Hum Mol Genet. 2015;24(19):5581–8.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Kotan LD, Cooper C, Darcan S, Carr IM, Ozen S, Yan Y, et al. Idiopathic hypogonadotropic hypogonadism caused by inactivating mutations in SRA1. J Clin Res Pediatr Endocrinol. 2016;8(2):125–34.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Okutman O, Muller J, Skory V, Garnier JM, Gaucherot A, Baert Y, et al. A no-stop mutation in MAGEB4 is a possible cause of rare X-linked azoospermia and oligozoospermia in a consanguineous Turkish family. J Assist Reprod Genet. 2017;34(5):683–94.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Kherraf ZE, Christou-Kent M, Karaouzene T, Amiri-Yekta A, Martinez G, Vargas AS, et al. SPINK2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia in homozygotes. EMBO Mol Med. 2017;9(8):1132–49.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Ramasamy R, Bakircioglu ME, Cengiz C, Karaca E, Scovell J, Jhangiani SN, et al. Whole-exome sequencing identifies novel homozygous mutation in NPAS2 in family with nonobstructive azoospermia. Fertil Steril. 2015;104(2):286–91.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, et al. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54(9):633–9.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Gershoni M, Hauser R, Yogev L, Lehavi O, Azem F, Yavetz H, et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med. 2017;19(9):998–1006.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Maor-Sagie E, Cinnamon Y, Yaacov B, Shaag A, Goldsmidt H, Zenvirt S, et al. Deleterious mutation in SYCE1 is associated with non-obstructive azoospermia. J Assist Reprod Genet. 2015;32(6):887–91.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tenenbaum-Rakover Y, Weinberg-Shukron A, Renbaum P, Lobel O, Eideh H, Gulsuner S, et al. Minichromosome maintenance complex component 8 (MCM8) gene mutations result in primary gonadal failure. J Med Genet. 2015;52(6):391–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fakhro KA, Elbardisi H, Arafa M, Robay A, Rodriguez-Flores JL, Al-Shakaki A, et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018;20(11):1365–73.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Kasak L, Punab M, Nagirnaja L, Grigorova M, Minajeva A, Lopes AM, et al. Bi-allelic recessive loss-of-function variants in FANCM cause non-obstructive azoospermia. Am J Hum Genet. 2018;103(2):200–12.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Carrell DT, Hammoud SS. The human sperm epigenome and its potential role in embryonic development. Mol Hum Reprod. 2010;16(1):37–47.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Jenkins TG, Aston KI, Meyer TD, Hotaling JM, Shamsi MB, Johnstone EB, et al. Decreased fecundity and sperm DNA methylation patterns. Fertil Steril. 2016;105(1):51–7 e1–3.CrossRefGoogle Scholar
  61. 61.
    Ajayi AA, Hockings N, Reid JL. The relationship between serum enalaprilat concentration and the hypotensive effect in man. Int J Clin Pharmacol Res. 1987;7(1):1–3.PubMedGoogle Scholar
  62. 62.
    Pickart CM, Rose IA. Mechanism of ubiquitin carboxyl-terminal hydrolase. Borohydride and hydroxylamine inactivate in the presence of ubiquitin. J Biol Chem. 1986;261(22):10210–7.PubMedGoogle Scholar
  63. 63.
    Jenkins TG, James ER, Alonso DF, Hoidal JR, Murphy PJ, Hotaling JM, et al. Cigarette smoking significantly alters sperm DNA methylation patterns. Andrology. 2017;5(6):1089–99.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Siddeek B, Mauduit C, Simeoni U, Benahmed M. Sperm epigenome as a marker of environmental exposure and lifestyle, at the origin of diseases inheritance. Mutat Res. 2018;778:38–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Kanatsu-Shinohara M, Shinohara T. Spermatogonial stem cell self-renewal and development. Annu Rev Cell Dev Biol. 2013;29:163–87.PubMedCrossRefGoogle Scholar
  66. 66.
    Hammoud SS, Low DH, Yi C, Carrell DT, Guccione E, Cairns BR. Chromatin and transcription transitions of mammalian adult germline stem cells and spermatogenesis. Cell Stem Cell. 2014;15(2):239–53.PubMedCrossRefGoogle Scholar
  67. 67.
    Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, et al. Generation of pluripotent stem cells from neonatal mouse testis. Cell. 2004;119(7):1001–12.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Helsel AR, Yang QE, Oatley MJ, Lord T, Sablitzky F, Oatley JM. ID4 levels dictate the stem cell state in mouse spermatogonia. Development. 2017;144(4):624–34.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Oatley JM, Brinster RL. The germline stem cell niche unit in mammalian testes. Physiol Rev. 2012;92(2):577–95.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Brinster RL, Zimmermann JW. Spermatogenesis following male germ-cell transplantation. Proc Natl Acad Sci U S A. 1994;91(24):11298–302.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kanatsu-Shinohara M, Ogonuki N, Inoue K, Miki H, Ogura A, Toyokuni S, et al. Long-term proliferation in culture and germline transmission of mouse male germline stem cells. Biol Reprod. 2003;69(2):612–6.PubMedCrossRefGoogle Scholar
  72. 72.
    Tegelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200.PubMedCrossRefGoogle Scholar
  73. 73.
    Chan F, Oatley MJ, Kaucher AV, Yang QE, Bieberich CJ, Shashikant CS, et al. Functional and molecular features of the Id4+ germline stem cell population in mouse testes. Genes Dev. 2014;28(12):1351–62.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod. 2006;74(2):314–21.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Dym M, Kokkinaki M, He Z. Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res C Embryo Today. 2009;87(1):27–34.PubMedCrossRefGoogle Scholar
  77. 77.
    Ehmcke J, Wistuba J, Schlatt S. Spermatogonial stem cells: questions, models and perspectives. Hum Reprod Update. 2006;12(3):275–82.PubMedCrossRefGoogle Scholar
  78. 78.
    Boitani C, Di Persio S, Esposito V, Vicini E. Spermatogonial cells: mouse, monkey and man comparison. Semin Cell Dev Biol. 2016;59:79–88.PubMedCrossRefGoogle Scholar
  79. 79.
    Clermont Y. Renewal of spermatogonia in man. Am J Anat. 1966;118(2):509–24.PubMedCrossRefGoogle Scholar
  80. 80.
    Medrano JV, Rombaut C, Simon C, Pellicer A, Goossens E. Human spermatogonial stem cells display limited proliferation in vitro under mouse spermatogonial stem cell culture conditions. Fertil Steril. 2016;106(6):1539–49.e8.PubMedCrossRefGoogle Scholar
  81. 81.
    Zheng Y, Thomas A, Schmidt CM, Dann CT. Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture. Hum Reprod. 2014;29(11):2497–511.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Sadri-Ardekani H, Mizrak SC, van Daalen SK, Korver CM, Roepers-Gajadien HL, Koruji M, et al. Propagation of human spermatogonial stem cells in vitro. JAMA. 2009;302(19):2127–34.PubMedCrossRefGoogle Scholar
  83. 83.
    Valli H, Phillips BT, Shetty G, Byrne JA, Clark AT, Meistrich ML, et al. Germline stem cells: toward the regeneration of spermatogenesis. Fertil Steril. 2014;101(1):3–13.PubMedCrossRefGoogle Scholar
  84. 84.
    Alves-Lopes JP, Stukenborg JB. Testicular organoids: a new model to study the testicular microenvironment in vitro? Hum Reprod Update. 2017;Google Scholar
  85. 85.
    Baert Y, De Kock J, Alves-Lopes JP, Söder O, Stukenborg JB, Goossens E. Primary human testicular cells self-organize into organoids with testicular properties. Stem Cell Rep. 2017;8(1):30–8.CrossRefGoogle Scholar
  86. 86.
    Wu AR, Wang J, Streets AM, Huang Y. Single-cell transcriptional analysis. Annu Rev Anal Chem (Palo Alto, Calif). 2017;10(1):439–62.CrossRefGoogle Scholar
  87. 87.
    Guo J, Grow EJ, Yi C, Mlcochova H, Maher GJ, Lindskog C, et al. Chromatin and single-cell RNA-seq profiling reveal dynamic signaling and metabolic transitions during human spermatogonial stem cell development. Cell Stem Cell. 2017;21(4):533–46.e6.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Valli H, Sukhwani M, Dovey SL, Peters KA, Donohue J, Castro CA, et al. Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells. Fertil Steril. 2014;102(2):566–80.e7.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Izadyar F, Wong J, Maki C, Pacchiarotti J, Ramos T, Howerton K, et al. Identification and characterization of repopulating spermatogonial stem cells from the adult human testis. Hum Reprod. 2011;26(6):1296–306.PubMedCrossRefGoogle Scholar
  90. 90.
    Guo J, Grow EJ, Mlcochova H, Maher GJ, Lindskog C, Nie X, et al. The adult human testis transcriptional cell atlas. Cell Res. 2018;28(12):1141–57.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Hermann BP, Cheng K, Singh A, Roa-De La Cruz L, Mutoji KN, Chen IC, et al. The mammalian spermatogenesis single-cell transcriptome, from spermatogonial stem cells to spermatids. Cell Rep. 2018;25(6):1650–67.e8.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wang M, Liu X, Chang G, Chen Y, An G, Yan L, et al. Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell. 2018;23(4):599–614.e4.PubMedCrossRefGoogle Scholar
  93. 93.
    Brinster RL. Germline stem cell transplantation and transgenesis. Science. 2002;296(5576):2174–6.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Adli M. The CRISPR tool kit for genome editing and beyond. Nat Commun. 2018;9(1):1911.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Capecchi MR. The new mouse genetics: altering the genome by gene targeting. Trends Genet. 1989;5(3):70–6.PubMedCrossRefGoogle Scholar
  96. 96.
    Rouet P, Smih F, Jasin M. Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. 1994;14(12):8096–106.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Jeggo PA. DNA breakage and repair. Adv Genet. 1998;38:185–218.PubMedCrossRefGoogle Scholar
  98. 98.
    Klug A, Rhodes D. Zinc fingers: a novel protein fold for nucleic acid recognition. Cold Spring Harb Symp Quant Biol. 1987;52:473–82.PubMedCrossRefGoogle Scholar
  99. 99.
    Urnov FD, Miller JC, Lee YL, Beausejour CM, Rock JM, Augustus S, et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. 2005;435(7042):646–51.PubMedCrossRefGoogle Scholar
  100. 100.
    Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. 1987;169(12):5429–33.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Jansen R, Embden JD, Gaastra W, Schouls LM. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. 2002;43(6):1565–75.PubMedCrossRefGoogle Scholar
  102. 102.
    Mojica FJ, Diez-Villasenor C, Soria E, Juez G. Biological significance of a family of regularly spaced repeats in the genomes of Archaea, Bacteria and mitochondria. Mol Microbiol. 2000;36(1):244–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science. 2007;315(5819):1709–12.PubMedCrossRefGoogle Scholar
  104. 104.
    Brouns SJ, Jore MM, Lundgren M, Westra ER, Slijkhuis RJ, Snijders AP, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. 2008;321(5891):960–4.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Adli M. The biology and application areas of CRISPR technologies. J Mol Biol. 2019;431(1):1–2.PubMedCrossRefGoogle Scholar
  106. 106.
    Fadul C, Misulis KE, Wiley RG. Cerebellar metastases: diagnostic and management considerations. J Clin Oncol. 1987;5(7):1107–15.PubMedCrossRefGoogle Scholar
  107. 107.
    Vojta A, Dobrinic P, Tadic V, Bockor L, Korac P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44(12):5615–28.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol. 2016;34(10):1060–5.PubMedCrossRefGoogle Scholar
  109. 109.
    Sadri-Ardekani H, McLean TW, Kogan S, Sirintrapun J, Crowell K, Yousif MQ, et al. Experimental testicular tissue banking to generate spermatogenesis in the future: a multidisciplinary team approach. Methods. 2016;99:120–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Oatley JM. Recent advances for spermatogonial stem cell transplantation in livestock. Reprod Fertil Dev. 2017;30(1):44–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Mulder CL, Zheng Y, Jan SZ, Struijk RB, Repping S, Hamer G, et al. Spermatogonial stem cell autotransplantation and germline genomic editing: a future cure for spermatogenic failure and prevention of transmission of genomic diseases. Hum Reprod Update. 2016;22(5):561–73.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Yang F, Silber S, Leu NA, Oates RD, Marszalek JD, Skaletsky H, et al. TEX11 is mutated in infertile men with azoospermia and regulates genome-wide recombination rates in mouse. EMBO Mol Med. 2015;7(9):1198–210.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Sha Y, Zheng L, Ji Z, Mei L, Ding L, Lin S, et al. A novel TEX11 mutation induces azoospermia: a case report of infertile brothers and literature review. BMC Med Genet. 2018;19(1):63.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Shang Y, Zhu F, Wang L, Ouyang YC, Dong MZ, Liu C, et al. Essential role for SUN5 in anchoring sperm head to the tail. elife. 2017:6.Google Scholar
  115. 115.
    Zhu F, Wang F, Yang X, Zhang J, Wu H, Zhang Z, et al. Biallelic SUN5 mutations cause autosomal-recessive acephalic spermatozoa syndrome. Am J Hum Genet. 2016;99(4):942–9.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Ben Khelifa M, Zouari R, Harbuz R, Halouani L, Arnoult C, Lunardi J, et al. A new AURKC mutation causing macrozoospermia: implications for human spermatogenesis and clinical diagnosis. Mol Hum Reprod. 2011;17(12):762–8.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Harbuz R, Zouari R, Pierre V, Ben Khelifa M, Kharouf M, Coutton C, et al. A recurrent deletion of DPY19L2 causes infertility in man by blocking sperm head elongation and acrosome formation. Am J Hum Genet. 2011;88(3):351–61.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Zhu F, Gong F, Lin G, Lu G. DPY19L2 gene mutations are a major cause of globozoospermia: identification of three novel point mutations. Mol Hum Reprod. 2013;19(6):395–404.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    ElInati E, Fossard C, Okutman O, Ghedir H, Ibala-Romdhane S, Ray PF, et al. A new mutation identified in SPATA16 in two globozoospermic patients. J Assist Reprod Genet. 2016;33(6):815–20.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Wang X, Jin H, Han F, Cui Y, Chen J, Yang C, et al. Homozygous DNAH1 frameshift mutation causes multiple morphological anomalies of the sperm flagella in Chinese. Clin Genet. 2017;91(2):313–21.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Imtiaz F, Allam R, Ramzan K, Al-Sayed M. Variation in DNAH1 may contribute to primary ciliary dyskinesia. BMC Med Genet. 2015;16:14.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Klinefelter HF, Reifenstein EC, Albright F. Syndrome characterized by gynecomastisa, aspermatogenesis without a-leydigism, and increased excietion of follicle-stimulating hormone. J Clin Endocrinol. 1942;2(11):615–27.CrossRefGoogle Scholar
  123. 123.
    Sha YW, Wang X, Xu X, Su ZY, Cui Y, Mei LB, et al. Novel mutations in CFAP44 and CFAP43 cause multiple morphological abnormalities of the sperm flagella (MMAF). Reprod Sci. 2017;1933719117749756Google Scholar
  124. 124.
    Avenarius MR, Hildebrand MS, Zhang Y, Meyer NC, Smith LL, Kahrizi K, et al. Human male infertility caused by mutations in the CATSPER1 channel protein. Am J Hum Genet. 2009;84(4):505–10.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Douglas T. Carrell
    • 1
    Email author
  • Jingtao Guo
    • 2
  • Kenneth I. Aston
    • 3
  1. 1.Departments of Surgery (Andrology) and Human GeneticsUniversity of Utah School of MedicineSalt Lake CityUSA
  2. 2.Huntsman Cancer Institute and Andrology Lab, Department of Oncological Sciences and Surgery, University of Utah School of MedicineSalt Lake CityUSA
  3. 3.Department of SurgeryUniversity of Utah School of MedicineSalt Lake CityUSA

Personalised recommendations