Early Cost Estimates of Bridge Structures Aided by Artificial Neural Networks

  • Michał JuszczykEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)


Cost estimates are essential for construction projects success in terms of completion of a project on budget. The estimates that are delivered in the early phase of construction projects are of special importance. The paper presents results of research on applicability of artificial neural networks for early cost estimates of bridge structures. Number of multilayer perceptron networks were investigated as a core of regression models developed to support cost prediction. Basic parameters of bridge structures were used as input values, whereas real life construction costs played the role of expected output values. Data used in the course of the research consisted of information collected for 161 bridge construction projects completed in Poland. One neural network of best performance was selected to be the core of the model with the use of two-step procedure. This network’s structure was 21-2-1 activation functions applied were hyperbolic tangent for hidden layer and linear for output layer. Performance of the model in the light of applied measures such as root mean squared error, mean absolute percentage error and assessment of absolute percentage errors distribution and expectations for early cost estimates is acceptable.


Early cost estimates Artificial neural networks Bridge structures 


  1. 1.
    Günaydın, H.M., Doğan, S.Z.: Int. J. Project Manage. 22(7), 595–602 (2004)CrossRefGoogle Scholar
  2. 2.
    Juszczyk, M.: Application of PCA-based data compression in the ANN-supported conceptual cost estimation of residential buildings. In: AIP Conference Proceedings, vol. 1738, no. 1, p. 200007. AIP Publishing, June 2016.
  3. 3.
    Juszczyk, M., Leśniak, A., Zima, K.: Complexity 2018 (2018)Google Scholar
  4. 4.
    Petroutsatou, K., et al.: J. Constr. Eng. Manage. 138(6), 679–687 (2012)CrossRefGoogle Scholar
  5. 5.
    Roxas, C.L.C., Ongpeng, J.M.C.: An artificial neural network approach to structural cost estimation of building projects in the Philippines. In: Proceedings of DLSU Research Congress, March 2014.
  6. 6.
    Elhag, T.M.S., Boussabaine, A.H.: An artificial neural system for cost estimation of construction projects. In: Hughes, W. (ed.) 14th Annual ARCOM Conference, vol. 1, pp. 219–226. Association of Researchers in Construction Management (1998)Google Scholar
  7. 7.
    ElSawy, I., Hosny, H., Razek, M.A.: Int. J. Comput. Sci. Issues 8(3), 273–283 (2011)Google Scholar
  8. 8.
    Leśniak, A., Juszczyk, M.: Arch. Civ. Mech. Eng. 18(3), 973–982 (2018)CrossRefGoogle Scholar
  9. 9.
    Alqahtani, A., Whyte, A.: Australas. J. Constr. Econ. Build. 13(3), 51–64 (2013)Google Scholar
  10. 10.
    Ashraf, M.E.: J. Constr. Eng. Manage. 132(12), 1242–1253 (2006)CrossRefGoogle Scholar
  11. 11.
    Dikmen, S.U., Sonmez, M.: J. Civ. Eng. Manage. 17(3), 340–347 (2011)CrossRefGoogle Scholar
  12. 12.
    Mrówczyńska, M.: Comput. Assist. Mech. Eng. Sci. 18(3), 161–173 (2011)Google Scholar
  13. 13.
    Pabisek, E.: Wydawnictwo Politechniki Krakowskiej (2008)Google Scholar
  14. 14.
    Schabowicz, K., Hoła, B.: Arch. Civ. Mech. Eng. 8(4), 73–84 (2008)CrossRefGoogle Scholar
  15. 15.
    Yip, H., Fan, H., Chiang, Y.: Autom. Constr. 38, 30–38 (2014)CrossRefGoogle Scholar
  16. 16.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)zbMATHGoogle Scholar
  17. 17.
    Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall, Upper Saddle River (1998)zbMATHGoogle Scholar
  18. 18.
    Osowski, S.: Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki Warszawskiej (2006)Google Scholar
  19. 19.
    Tadeusiewicz, R.: Sieci neuronowe. Akademicka Oficyna Wydawnicza (1993)Google Scholar
  20. 20.
    Waszczyszyn, Z.: Zastosowanie sztucznych sieci neuronowych w inzynierii ladowej, XLI Konferencja Naukowa KILiW PAN i Komitetu Nauki PZITB, Tom 9, pp. 251–288, Kraków-Krynica (1995)Google Scholar
  21. 21.
    Waszczyszyn, Z.: Fundamentals of artificial neural networks. CEEPUS Lectures delivered at the Department of Structural Mechanics of the Budapest University of Technology and Economics (2002)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Cracow University of TechnologyCracowPoland

Personalised recommendations