Advertisement

Coordination of Parameters of Transport Elements System in the Conditions of Lack of Traffic and Estimated Capacity

  • Elena Timukhina
  • Oleg Osokin
  • Nikolay Tushin
  • Anton KoshcheevEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)

Abstract

The paper deals with the balanced development problem of the infrastructure of railway transport enterprises, aimed at improving the economic efficiency of their operation. In order to solve the problem, it is proposed to use an approach, according to which the interaction of its elements is taken into account for calculating the capacity of the transport system. In other words, the traffic and estimated capacities of the station devices (“channels”) is determined considering the reserve capacity of the preceding elements (“bins”). Bins carry out an important task, they reduce flow irregularity, thereby increasing the load factor of subsequent servicing devices. Inefficient interaction of elements means economic losses in terms of excess or lack of capacity. Therefore, in order to achieve economic efficiency of railway enterprises, the elements in the structure have to interact efficiently, which implies the harmonization of the parameters of elements according to some criterion. In order to organize the effective interaction of elements at the “bin + channel” level, the balanced traffic capacity criterion was formulated. Speaking about the elements inside the “bin + channel” structures, the final decision on their coordination is made based on the minimum capital and operating costs criterion. As a result, based on the developed criteria, the methodology for coordinating the parameters of structural elements of railway stations is proposed in the paper. The methodology ensures minimization of capital and operating costs of the transport system as a whole.

References

  1. 1.
    Transportnaia strategiia Rossiiskoi Federatsii na period do 2030 goda: utverzhdena rasporiazheniem pravitelstva Rossiiskoi Federatsii ot 22.11.2008. № 1734-rGoogle Scholar
  2. 2.
    Hansen, I., Pachl, J.: Railway, Timetable and Traffic. Eurailpress, Hamburg (2008)Google Scholar
  3. 3.
    Abril, M., Barber, F., Ingolotti, L., Salido, M.A., Tormos, P., Lova, A.: An assessment of railway capacity. Transp. Res. Part E Logist. Transp. Rev. 44(5), 774–806 (2008)CrossRefGoogle Scholar
  4. 4.
    Kontaxi, E., Ricci, S.: Railway models for capacity calculation. In: 2nd International Conference on Models and Technologies for Intelligent Transportation Systems, 22–24 June, 2011, Leuven, Belgium (2011)Google Scholar
  5. 5.
    Kozlov, P.A., Kolokolnikov, V.S., Tushin, N.A.: O rezultiruiushchei propusknoi sposobnosti posledovatelno raspolozhennykh ustroistv. Vestn. UrGUPS 1(33), 53–61 (2017).  https://doi.org/10.20291/2079-0392-2017-1-53-61. (in Russian). ISSN 2079-0392CrossRefGoogle Scholar
  6. 6.
    Pottgoff, G.: Metod rascheta propusknoi sposobnosti vkhodnykh gorlovin stantsii. Zheleznodorozhnyi Transp. 8, 88–91 (1963). (in Russian)Google Scholar
  7. 7.
    Potthoff, G.: Verkehrsströmungslehre 1, pp. 1963–1972. Transpress VEB Verlag für Verkehrswesen, Berlin (1962). (in German)Google Scholar
  8. 8.
    Tal, K.K.: Povyshenie propusknoi sposobnosti strelochnykh gorlovin. Vestn. TsNII 4, 48–51 (1956). (in Russian)Google Scholar
  9. 9.
    Tal, K.K.: O metodike raschetov propusknoi sposobnosti stantsii. Zheleznodorozhnyi Transp. 12, 47–51 (1960). (in Russian)Google Scholar
  10. 10.
    Wakob, H.: Ableitung eines generellen Wartemodells zur Ermittlung der planmässigen Wartezeiten im Eisenbahnbetrieb unter besonderer Berücksichtigung der Aspekte Leistungsfähigkeit und Anlagenbelastung. RWTH, Aachen (1985). (in German)Google Scholar
  11. 11.
    De Kort, A.F., Heidergott, B., van Egmond, R.J., Hooghiemstra, G.: Train movement analysis at railway stations: procedures & evaluation of Wakobs approach. TRAIL Stud. Transp. Sci. S99/1, 65 p. Delft University Press, The Netherlands, TRAIL Research School, Delft (1999)Google Scholar
  12. 12.
    Schwanhäusser, W.: Die Bemessung der Pufferzeiten im Fahrplangefüge der Eisenbahn. Veröffentlichungen des verkehrswissenschaftlichen Institutes der RWTH Aachen 20 (1974). (in German)Google Scholar
  13. 13.
    Wendler, E.: Analytische Berechnung der planmässigen Wartezeiten bei asynchroner Fahrplankonstruktion. Veröffentlichungen des verkehrswissenschaftlichen Institutes der RWTH Aachen (55), 11–18 (1999). (in German)Google Scholar
  14. 14.
    Malavasi, G., Molková, T., Ricci, S., Rotoli, F.: A synthetic approach to the evaluation of the carrying capacity of complex railway nodes. J. Rail Transp. Plan. Manag. 4(1), 28–42 (2014)Google Scholar
  15. 15.
    Radtke, A., Hauptmann, D.: Automated planning of timetables in large railway networks using a microscopic data basis and railway simulation techniques. In: Allan, J., et al. (eds.) Computers in Railways IX, pp. 615–625. WIT Press, Southampton (2004)Google Scholar
  16. 16.
    Nash, A., Huerlimann, D.: Railroad simulation using OpenTrack. In: Allan, J., et al. (eds.) Computers in Railways IX, pp. 45–59. WIT Press, Southampton (2004)Google Scholar
  17. 17.
    Adamko, N., Klima, V., Marton, P.: Designing railway terminals using simulation techniques. Int. J. Civ. Eng. 8(1), 58–67 (2010)Google Scholar
  18. 18.
    Timukhina, E.N., Kashcheeva, N.V., Koshcheev, A.A.: Printsipy vybora indikatorov dlia funktsionirovaniia apparata interaktivnogo modelirovaniia. Transp. nauka tekhnika upravlenie (9), 64–67 (2015). ISSN 0236-1914. (in Russian)Google Scholar
  19. 19.
    Timukhina, E.N., Kashcheeva, N.V., Koshcheev, A.A.: Tekhnologiia ispolzovaniia indikatorov v interaktivnom modelirovanii. Transp. Urala 4(47), 16–19 (2015).  https://doi.org/10.20291/1815-9400-2015-4-16-19. ISSN 1815-9400. (in Russian)CrossRefGoogle Scholar
  20. 20.
    Timukhina, E.N., Kashcheeva, N.V., Afanaseva, N.A., Koshcheev, A.A.: Tekhniko-ekonomicheskoe obosnovanie reshenii po povysheniiu pererabatyvaiushchei sposobnosti obsluzhivaiushchikh ustroistv v sistemakh zheleznodorozhnogo transporta. Transp. Urala 1(56), 35–44 (2018)CrossRefGoogle Scholar
  21. 21.
    Timukhina, E.N., Kashcheevam, N.V., Koshcheevm, A.A.: Analiz metodov rascheta zheleznodorozhnykh stantsii. Transp. nauka tekhnika upravlenie (7), 31–34 (2015). ISSN 0236-1914. (in Russian)Google Scholar
  22. 22.
    Kozlov, P.A.: Teoreticheskie osnovy, organizatsionnye formy, metody optimizatsii gibkoi tekhnologii transportnogo obsluzhivaniia zavodov chernoi metallurgii: dis. … dok.tekhn.nauk, Moscow, 393 p. (1987). (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ural State University of Railway TransportSverdlovsk Region, YekaterinburgRussia
  2. 2.SPH Strateg LLCMoscowRussia

Personalised recommendations