• Jun Zhang
Part of the CRM Short Courses book series (CRMSC)


In this chapter, we give detailed descriptions of the concepts of derived category, persistence k-module, and singular support. These serve as preparations for the topics treated in later chapters. Sections 2.1 to 2.5 are devoted to derived category and derived functors, as well as their applications in the category of sheaves. These are basic ingredients for Tamarkin categories. Sections 2.6 and 2.7 are devoted to the theory of persistence k-module theory, which figures the interleaving distance and barcodes. Two main theorems highlight this theory: Normal Form Theorem and Isometry Theorem. Sections 2.8 and 2.9 are devoted to the definition of the singular support, its various functorial properties, and an important result, the microlocal Morse lemma, which generalizes the classical Morse lemma to a microlocal formulation. This lemma is essential in the constructions of Tamarkin categories.


  1. 3.
    Bauer, U., Lesnick, M.: Induced matchings of barcodes and the algebraic stability of persistence. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, p. 355. ACM, New York (2014)Google Scholar
  2. 6.
    Bubenik, P., de Silva, V., Nanda., V.: Higher interpolation and extension for persistence modules. SIAM J. Appl. Algebra Geom. 1(1), 272–284 (2017)Google Scholar
  3. 8.
    Chazal, F., Cohen-Steiner, D., Glisse, M., Guibas, L.J., Oudot, S.: Proximity of persistence modules and their diagrams. In: Proceedings of the Twenty-fifth Annual Symposium on Computational Geometry, pp. 237–246. ACM, New York (2009)Google Scholar
  4. 9.
    Chazal, F., de Silva, V., Glisse, M., Oudot, S.: The Structure and Stability of Persistence Modules. SpringerBriefs in Mathematics. Springer, Cham (2016)CrossRefGoogle Scholar
  5. 11.
    Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. Discrete Comput. Geom. 37(1), 103–120 (2007)MathSciNetCrossRefGoogle Scholar
  6. 12.
    Crawley-Boevery, W.: Decomposition of pointwise finite-dimensional persistence modules. J. Algebra Appl. 14(05), 1550066 (2015)MathSciNetCrossRefGoogle Scholar
  7. 20.
    Gabriel, P.: Unzerlegbare darstellungen I. Manuscripta Math. 6(1), 71–103 (1972)MathSciNetCrossRefGoogle Scholar
  8. 21.
    Gelfand, S., Manin, Y.: Methods of Homological Algebra. Springer Monographs in Mathematics, 2nd edn. Springer, Berlin (2003)Google Scholar
  9. 28.
    Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, No. 52. Springer, New York (1977)Google Scholar
  10. 30.
    Huybrechts, D.: Fourier-Mukai Transforms in Algebraic Geometry. Oxford University Press on Demand, Oxford (2006)zbMATHGoogle Scholar
  11. 32.
    Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Grundlehren der Mathematischen Wissenschaften, vol. 292. Springer, Berlin (1990). With a chapter in French by Christian HouzelGoogle Scholar
  12. 43.
    Polterovich, L., Rosen, D., Samvelyan, K., Zhang, J.: Topological Persistence in Geometry and Analysis (2019). Preprint. arXiv: 1904.04044Google Scholar
  13. 61.
    Viterbo, C.: An introduction to symplectic topology through sheaf theory (2011). PreprintGoogle Scholar
  14. 63.
    Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33(2), 249–274 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Jun Zhang
    • 1
  1. 1.Département de Mathématiques et StatistiqueUniversity of MontrealMontréalCanada

Personalised recommendations