Advertisement

Pareto-Based Self-organizing Migrating Algorithm Solving 100-Digit Challenge

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1092)

Abstract

In this article, we describe the design and implementation of a variant version of SOMA named SOMA Pareto to solve ten hard problems of the 100-Digit Challenge. The algorithm consists of the following operations: Organization, Migration, and Update. In which, we focus on improving the Organization operation with the adaptive parameters of PRT and Step. When applying the SOMA Pareto to solve ten hard problems to 10 digits of accuracy, we achieved a competitive result: 85.04 points.

Keywords

Self-organizing migrating algorithm Optimization function SOMA Pareto Swarm intelligence 100-digit challenge 

Notes

Acknowledgement

The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2019/137, VSB Technical University of Ostrava. This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089.

References

  1. 1.
    Bao, D.Q., Zelinka, I.: Obstacle avoidance for swarm robot based on self-organizing migrating algorithm. Proc. Comput. Sci. 150, 425–432 (2019)CrossRefGoogle Scholar
  2. 2.
    Davendra, D., Zelinka, I.: Self-organizing migrating algorithm. In: New Optimization Techniques in Engineering. Studies in Computational Intelligence. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-28161-2. https://link.springer.com/book/10.1007%2F978-3-319-28161-2#toczbMATHGoogle Scholar
  3. 3.
    Davendra, D., Zelinka, I., Bialic-Davendra, M., Senkerik, R., Jasek, R.: Discrete self-organising migrating algorithm for flow-shop scheduling with no-wait makespan. Math. Comput. Modell. 57(1–2), 100–110 (2013) MathSciNetCrossRefGoogle Scholar
  4. 4.
    Davendra, D., Zelinka, I., Pluhacek, M., Senkerik, R.: DSOMA—discrete self organising migrating algorithm. In: Davendra, D., Zelinka, I. (eds.) Self-Organizing Migrating Algorithm. SCI, vol. 626, pp. 51–63. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-28161-2_2CrossRefzbMATHGoogle Scholar
  5. 5.
    Deep, K.: Dipti: a self-organizing migrating genetic algorithm for constrained optimization. Appl. Math. Comput. 198(1), 237–250 (2008)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Del Ser, J., et al.: Bio-inspired computation: where we stand and what’s next. Swarm Evol. Comput. 48, 220–250 (2019)CrossRefGoogle Scholar
  7. 7.
    Diep, Q., Zelinka, I., Das, S.: Self-organizing migrating algorithm pareto. MENDEL 25(1), 111–120 (2019)CrossRefGoogle Scholar
  8. 8.
    Diep, Q.B.: Self-organizing migrating algorithm team to team adaptive-SOMA T3A. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp. 1182–1187. IEEE (2019)Google Scholar
  9. 9.
    Price, K.V., Awad, N.H., Ali, M.Z., Suganthan, P.N.: The 100-digit challenge: problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization. Technical report. Nanyang Technological University Singapore (2018)Google Scholar
  10. 10.
    Kadlec, P., Raida, Z.: A novel multi-objective self-organizing migrating algorithm. Radioengineering 20(4), 804–816 (2011)Google Scholar
  11. 11.
    Nolle, L., Zelinka, I., Hopgood, A.A., Goodyear, A.: Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Adv. Eng. Softw. 36(10), 645–653 (2005) CrossRefGoogle Scholar
  12. 12.
    dos Santos Coelho, L., Mariani, V.C.: An efficient cultural self-organizing migrating strategy for economic dispatch optimization with valve-point effect. Energy Convers. Manage. 51(12), 2580–2587 (2010)CrossRefGoogle Scholar
  13. 13.
    Singh, D., Agrawal, S.: Hybridization of self organizing migrating algorithm with quadratic approximation and non uniform mutation for function optimization. In: Das, K.N., Deep, K., Pant, M., Bansal, J.C., Nagar, A. (eds.) Proceedings of Fourth International Conference on Soft Computing for Problem Solving. AISC, vol. 335, pp. 373–387. Springer, New Delhi (2015).  https://doi.org/10.1007/978-81-322-2217-0_32CrossRefGoogle Scholar
  14. 14.
    Singh, D., Agrawal, S.: Nelder-mead and non-uniform based self-organizing migrating algorithm. In: Pant, M., Deep, K., Bansal, J., Nagar, A., Das, K. (eds.) Soft Computing for Problem Solving, vol. 436, pp. 795–807. Springer, Singapore (2016).  https://doi.org/10.1007/978-981-10-0448-3_66CrossRefGoogle Scholar
  15. 15.
    Zelinka, I.: SOMA-self-organizing migrating algorithm. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering, vol. 141, pp. 167–217. Springer, Heidelberg (2004).  https://doi.org/10.1007/978-3-540-39930-8_7CrossRefGoogle Scholar
  16. 16.
    Zelinka, I., Jouni, L.: SOMA-self-organizing migrating algorithm mendel. In: 6th International Conference on Soft Computing, Brno, Czech Republic (2000)Google Scholar
  17. 17.
    Zelinka, I., Němec, M., Šenkeřík, R.: Gamesourcing: perspectives and implementations. In: Simulation and Gaming. IntechOpen (2017)Google Scholar
  18. 18.
    Zelinka, I., Sikora, L.: StarCraft: brood war–strategy powered by the soma swarm algorithm. In: 2015 IEEE Conference on Computational Intelligence and Games (CIG), pp. 511–516. IEEE (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electrical Engineering and Computer ScienceVSB-Technical University of OstravaOstrava-Poruba, OstravaCzech Republic
  2. 2.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations