Advertisement

Insight into Adaptive Differential Evolution Variants with Unconventional Randomization Schemes

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1092)

Abstract

The focus of this work is the deeper insight into arising serious research questions connected with the growing popularity of combining metaheuristic algorithms and chaotic sequences showing quasi-periodic patterns. This paper reports an analysis of population dynamics by linking three elements like distribution of the results, population diversity, and differences between strategies of Differential Evolution (DE). Experiments utilize two frequently studied self-adaptive DE versions, which are simpler jDE and SHADE, further an original DE variant for comparisons, and totally ten chaos-driven quasi-random schemes for the indices selection in the DE. All important performance characteristics and population diversity are recorded and analyzed for the CEC 2015 benchmark set in 30D.

Keywords

Differential Evolution Population diversity Chaos-driven heuristics CEC 2015 benchmark 

Notes

Acknowledgement

Authors RS, AV, TK and MP acknowledge the support of project No. LO1303 (MSMT-7778/2014) by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme, further the project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 under the European Regional Development Fund. Authors AV and TK also acknowledge the Internal Grant Agency of Tomas Bata University under the project No. IGA/CebiaTech/2019/002. This work is also based upon support by COST Action CA15140 (ImAppNIO), and the resources of A.I.Lab at the Faculty of Applied Informatics, TBU in Zlin (ailab.fai.utb.cz). Finally, Author Ivan Zelinka acknowledges the support of grant SGS 2019/137, VSB-Technical University of Ostrava.

References

  1. 1.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution: A Practical Approach to Global Optimization, Berlin. Springer, Heidelberg (2005).  https://doi.org/10.1007/3-540-31306-0CrossRefzbMATHGoogle Scholar
  2. 2.
    Weber, M., Neri, F., Tirronen, V.: A study on scale factor in distributed differential evolution. Inf. Sci. 181(12), 2488–2511 (2011)CrossRefGoogle Scholar
  3. 3.
    Zamuda, A., Brest, J.: Self-adaptive control parameters׳ randomization frequency and propagations in differential evolution. Swarm Evol. Comput. 25, 72–99 (2015)CrossRefGoogle Scholar
  4. 4.
    Meng, H.J., Zheng, P., Mei, G.H., Xie, Z.: Particle swarm optimization algorithm based on chaotic series. Control Decis. 21(3), 263 (2006)Google Scholar
  5. 5.
    Liu, H., Abraham, A., Clerc, M.: Chaotic dynamic characteristics in swarm intelligence. Appl. Soft Comput. 7(3), 1019–1026 (2007)CrossRefGoogle Scholar
  6. 6.
    Liu, H., Abraham, A.: Chaos and swarm intelligence. In: Kocarev, L., Galias, Z., Lian, S. (eds.) Intelligent Computing Based on Chaos, pp. 197–212. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-540-95972-4_9CrossRefGoogle Scholar
  7. 7.
    Caponetto, R., Fortuna, L., Fazzino, S., Xibilia, M.G.: Chaotic sequences to improve the performance of evolutionary algorithms. IEEE Trans. Evol. Comput. 7(3), 289–304 (2003)CrossRefGoogle Scholar
  8. 8.
    Coelho, L., Mariani, V.C.: A novel chaotic particle swarm optimization approach using Hénon map and implicit filtering local search for economic load dispatch. Chaos Solitons Fractals 39(2), 510–518 (2009)CrossRefGoogle Scholar
  9. 9.
    Davendra, D., Zelinka, I., Senkerik, R.: Chaos driven evolutionary algorithms for the task of PID control. Comput. Math Appl. 60(4), 1088–1104 (2010)CrossRefGoogle Scholar
  10. 10.
    Ozer, A.B.: CIDE: chaotically initialized differential evolution. Expert Syst. Appl. 37(6), 4632–4641 (2010)CrossRefGoogle Scholar
  11. 11.
    Pluhacek, M., Senkerik, R., Davendra, D.: Chaos particle swarm optimization with Eensemble of chaotic systems. Swarm Evol. Comput. 25, 29–35 (2015)CrossRefGoogle Scholar
  12. 12.
    Wang, G.G., Deb, S., Gandomi, A.H., Zhang, Z., Alavi, A.H.: Chaotic cuckoo search. Soft. Comput. 20(9), 3349–3362 (2016)CrossRefGoogle Scholar
  13. 13.
    Fister Jr., I., Perc, M., Kamal, S.M., Fister, I.: A review of chaos-based firefly algorithms: perspectives and research challenges. Appl. Math. Comput. 252, 155–165 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Alatas, B.: Chaotic bee colony algorithms for global numerical optimization. Expert Syst. Appl. 37(8), 5682–5687 (2010)CrossRefGoogle Scholar
  15. 15.
    Metlicka, M., Davendra, D.: Chaos driven discrete artificial bee algorithm for location and assignment optimisation problems. Swarm Evol. Comput. 25, 15–28 (2015)CrossRefGoogle Scholar
  16. 16.
    Zhang, J., Lin, S., Qiu, W.: A modified chaotic differential evolution algorithm for short-term optimal hydrothermal scheduling. Int. J. Electr. Power Energy Syst. 65, 159–168 (2015)CrossRefGoogle Scholar
  17. 17.
    Mokhtari, H., Salmasnia, A.: A Monte Carlo simulation based chaotic differential evolution algorithm for scheduling a stochastic parallel processor system. Expert Syst. Appl. 42(20), 7132–7147 (2015)CrossRefGoogle Scholar
  18. 18.
    Das, S.: Chaotic patterns in the discrete-time dynamics of social foraging swarms with attractant–repellent profiles: an analysis. Nonlinear Dyn. 82(3), 1399–1417 (2015)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Viktorin, A., Senkerik, R., Pluhacek, M., Kadavy, T., Zamuda, A.: Distance based parameter adaptation for success-history based differential evolution. Swarm Evol. Comput. 50, 100462 (2018)CrossRefGoogle Scholar
  20. 20.
    Sudholt, D.: The benefits of population diversity in evolutionary algorithms: a survey of rigorous runtime analyses. arXiv preprint arXiv:1801.10087 (2018)
  21. 21.
    Corus, D., Oliveto, P.S.: Standard steady state genetic algorithms can hillclimb faster than mutation-only evolutionary algorithms. IEEE Trans. Evol. Comput. 22(5), 720–732 (2018)CrossRefGoogle Scholar
  22. 22.
    Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T., Zelinka, I.: How unconventional chaotic pseudo-random generators influence population diversity in differential evolution. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 524–535. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-91253-0_49CrossRefGoogle Scholar
  23. 23.
    Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T., Oplatkova, Z.K.: Differential evolution and chaotic series. In: 2018 25th International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 1–5. IEEE, June 2018Google Scholar
  24. 24.
    Senkerik, R., et al.: Population diversity analysis in adaptive differential evolution variants with unconventional randomization schemes. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2019. LNCS (LNAI), vol. 11508, pp. 506–518. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-20912-4_46CrossRefGoogle Scholar
  25. 25.
    Karafotias, G., Hoogendoorn, M., Eiben, Á.E.: Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans. Evol. Comput. 19(2), 167–187 (2014)CrossRefGoogle Scholar
  26. 26.
    Das, S., Mullick, S.S., Suganthan, P.: Recent advances in differential evolution – an updated survey. Swarm Evol. Comput. 27, 1–30 (2016)CrossRefGoogle Scholar
  27. 27.
    Brest, J., Greiner, S., Bosković, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10(6), 646–657 (2006)CrossRefGoogle Scholar
  28. 28.
    Tanabe, R., Fukunaga, A.S.: Improving the search performance of SHADE using linear population size reduction. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1658–1665. IEEE (2014)Google Scholar
  29. 29.
    Sprott, J.C.: Chaos and Time-Series Analysis. Oxford University Press, Oxford (2003)zbMATHGoogle Scholar
  30. 30.
    Chen, Q., Liu, B., Zhang, Q., Liang, J.J., Suganthan, P.N., Qu, B.Y.: Problem definition and evaluation criteria for CEC 2015 special session and competition on bound constrained single-objective computationally expensive numerical optimization. Technical report, Computational Intelligence Laboratory, Zhengzhou University, China and Nanyang Technological University, Singapore (2014)Google Scholar
  31. 31.
    Poláková, R., Tvrdík, J., Bujok, P., Matoušek, R.: Population-size adaptation through diversity-control mechanism for differential evolution. In: MENDEL, 22th International Conference on Soft Computing, pp. 49–56 (2016)Google Scholar
  32. 32.
    Senkerik, R., Viktorin, A., Pluhacek, M., Kadavy, T.: On the population diversity for the chaotic differential evolution. In: 2018 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE, July 2018Google Scholar
  33. 33.
    Das, S., Abraham, A., Chakraborty, U., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13(3), 526–553 (2009)CrossRefGoogle Scholar
  34. 34.
    Viktorin, A., Pluhacek, M., Senkerik, R.: Success-history based adaptive differential evolution algorithm with multi-chaotic framework for parent selection performance on CEC2014 benchmark set. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4797–4803. IEEE, July 2016Google Scholar
  35. 35.
    Wu, G., Mallipeddi, R., Suganthan, P.N.: Ensemble strategies for population-based optimization algorithms–a survey. Swarm Evol. Comput. 44, 695–711 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic
  2. 2.Faculty of Electrical Engineering and Computer ScienceTechnical University of OstravaOstravaCzech Republic

Personalised recommendations