Skip to main content

Neural Swarm Virus

  • Conference paper
  • First Online:
Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing (SEMCCO 2019, FANCCO 2019)

Abstract

The dramatic improvements in computational intelligence techniques over recent years have influenced many domains. Hence, it is reasonable to expect that virus writers will taking advantage of these techniques to defeat existing security solution. In this article, we outline a possible dynamic swarm smart malware, its structure, and functionality as a background for the forthcoming anti-malware solution. We propose how to record and visualize the behavior of the virus when it propagates through the file system. Neural swarm virus prototype, designed here, simulates the swarm system behavior and integrates the neural network to operate more efficiently. The virus’s behavioral information is stored and displayed as a complex network to reflect the communication and behavior of the swarm. In this complex network, every vertex is then individual virus instances. Additionally, the virus instances can use certain properties associated with the network structure to discovering target and executing a payload on the right object.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, H.S., Kharkar, A., Filar, B., Evans, D., Roth, P.: Learning to evade static PE machine learning malware models via reinforcement learning. arXiv:1801.08917 (2018)

  2. Anderson, H.S., Kharkar, A., Filar, B., Roth, P.: Evading machine learning malware detection. Black Hat (2017)

    Google Scholar 

  3. Anderson, H.S., Woodbridge, J., Filar, B.: DeepDGA: adversarially-tuned domain generation and detection. In: Proceedings of the 2016 ACM Workshop on Artificial Intelligence and Security, pp. 13–21. ACM (2016)

    Google Scholar 

  4. Aycock, J.: Computer Viruses and Malware, vol. 22. Springer, Heidelberg (2006). https://doi.org/10.1007/0-387-34188-9

    Book  Google Scholar 

  5. Bianconi, G., Darst, R.K., Iacovacci, J., Fortunato, S.: Triadic closure as a basic generating mechanism of communities in complex networks. Phys. Rev. E 90(4), 042806 (2014)

    Article  Google Scholar 

  6. Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems. No. 1. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  7. Brundage, M., et al.: The malicious use of artificial intelligence: forecasting, prevention, and mitigation. arXiv preprint arXiv:1802.07228 (2018)

  8. Cani, A., Gaudesi, M., Sanchez, E., Squillero, G., Tonda, A.P.: Towards automated malware creation: code generation and code integration. In: SAC, pp. 157–160 (2014)

    Google Scholar 

  9. Cohen, F.: Computer viruses: theory and experiments. Comput. Secur. 6(1), 22–35 (1987)

    Article  Google Scholar 

  10. Zelinka, I.: SOMA—self-organizing migrating algorithm. In: Davendra, D., Zelinka, I. (eds.) Self-Organizing Migrating Algorithm. SCI, vol. 626, pp. 3–49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28161-2_1

    Chapter  MATH  Google Scholar 

  11. Dorigo, M., Birattari, M.: Ant colony optimization. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning. Springer, Boston (2011). https://doi.org/10.1007/978-0-387-30164-8

    Chapter  MATH  Google Scholar 

  12. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, MHS 1995, pp. 39–43. IEEE (1995)

    Google Scholar 

  13. Filiol, E.: Strong cryptography armoured computer viruses forbidding code analysis: the Bradley virus. Ph.D. thesis, INRIA (2004)

    Google Scholar 

  14. Filiol, E.: Computer Viruses: From Theory to Applications. Springer, Heidelberg (2006). https://doi.org/10.1007/2-287-28099-5

    Book  MATH  Google Scholar 

  15. Geigel, A.: Neural network Trojan. J. Comput. Secur. 21(2), 191–232 (2013)

    Article  Google Scholar 

  16. Geigel, A.: Unsupervised learning Trojan. Ph.D. thesis, Nova Southeastern University (2014)

    Google Scholar 

  17. Grosse, K., Papernot, N., Manoharan, P., Backes, M., McDaniel, P.: Adversarial perturbations against deep neural networks for malware classification. arXiv preprint arXiv:1606.04435 (2016)

  18. Hu, W., Tan, Y.: Generating adversarial malware examples for black-box attacks based on GAN. arXiv preprint arXiv:1702.05983 (2017)

  19. Kennedy, J.: Swarm intelligence. In: Zomaya, A.Y. (ed.) Handbook of Nature-Inspired and Innovative Computing, pp. 187–219. Springer, Boston (2006). https://doi.org/10.1007/0-387-27705-6_6

    Chapter  Google Scholar 

  20. Kudo, T., Kimura, T., Inoue, Y., Aman, H., Hirata, K.: Behavior analysis of self-evolving botnets. In: 2016 International Conference on Computer, Information and Telecommunication Systems (CITS), pp. 1–5. IEEE (2016)

    Google Scholar 

  21. Kudo, T., Kimura, T., Inoue, Y., Aman, H., Hirata, K.: Stochastic modeling of self-evolving botnets with vulnerability discovery. Comput. Commun. 124, 101–110 (2018)

    Article  Google Scholar 

  22. Kushner, D.: The real story of stuxnet. IEEE Spectr. 3(50), 48–53 (2013)

    Article  Google Scholar 

  23. Lazfi, S., Lamzabi, S., Rachadi, A., Ez-Zahraouy, H.: The impact of neighboring infection on the computer virus spread in packets on scale-free networks. Int. J. Mod. Phys. B 31(30), 1750228 (2017)

    Article  MathSciNet  Google Scholar 

  24. Meng, G., et al.: Mystique: evolving android malware for auditing anti-malware tools. In: Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security, pp. 365–376. ACM (2016)

    Google Scholar 

  25. Noreen, S., Murtaza, S., Shafiq, M.Z., Farooq, M.: Evolvable malware. In: Proceedings of the 11th Annual Conference on Genetic and Evolutionary Computation, pp. 1569–1576. ACM (2009)

    Google Scholar 

  26. Pan, W., Jin, Z.: Edge-based modeling of computer virus contagion on a tripartite graph. Appl. Math. Comput. 320, 282–291 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Parsaei, M.R., Javidan, R., Kargar, N.S., Nik, H.S.: On the global stability of an epidemic model of computer viruses. Theory Biosci. 136(3–4), 169–178 (2017)

    Article  Google Scholar 

  28. Prasse, P., Machlica, L., Pevný, T., Havelka, J., Scheffer, T.: Malware detection by analysing encrypted network traffic with neural networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10535, pp. 73–88. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71246-8_5

    Chapter  Google Scholar 

  29. Rad, B.B., Masrom, M., Ibrahim, S.: Camouflage in malware: from encryption to metamorphism. Int. J. Comput. Sci. Netw. Secur. 12(8), 74–83 (2012)

    Google Scholar 

  30. Ren, J., Xu, Y.: A compartmental model for computer virus propagation with kill signals. Phys. A 486, 446–454 (2017)

    Article  MathSciNet  Google Scholar 

  31. Singh, J., Kumar, D., Hammouch, Z., Atangana, A.: A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl. Math. Comput. 316, 504–515 (2018)

    MathSciNet  MATH  Google Scholar 

  32. Spafford, E.H.: Computer viruses as artificial life. Artif. Life 1(3), 249–265 (1994)

    Article  Google Scholar 

  33. Szor, P.: The Art of Computer Virus Research and Defense. Pearson Education, London (2005)

    Google Scholar 

  34. Whitley, D.: A genetic algorithm tutorial. Stat. Comput. 4(2), 65–85 (1994)

    Article  Google Scholar 

  35. Xu, W., Qi, Y., Evans, D.: Automatically evading classifiers. In: Proceedings of the 2016 Network and Distributed Systems Symposium, pp. 21–24 (2016)

    Google Scholar 

  36. Zelinka, I.: SOMA - self organizing migrating algorithm. In: Onwubolu, G.C., Babu, B.V. (eds.) New Optimization Techniques in Engineering. STUDFUZZ, vol. 141, pp. 167–217. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-39930-8_7

    Chapter  Google Scholar 

  37. Zelinka, I., Chen, G.: Evolutionary Algorithms, Swarm Dynamics and Complex Networks: Methodology, Perspectives and Implementation, vol. 26. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55663-4

    Book  MATH  Google Scholar 

  38. Zelinka, I., Das, S., Sikora, L., Šenkeřík, R.: Swarm virus - next-generation virus and antivirus paradigm? Swarm Evol. Comput. 43, 207–224 (2018)

    Article  Google Scholar 

  39. Zelinka, I., Jouni, L.: Soma - self-organizing migrating algorithm. In: Mendel 2000, 6th International Conference on Soft Computing, Brno, Czech Republic, pp. 177–187 (2000)

    Google Scholar 

  40. Zhang, X., Gan, C.: Global attractivity and optimal dynamic countermeasure of a virus propagation model in complex networks. Phys. A 490, 1004–1018 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

The following grants are acknowledged for the financial support provided for this research: Grant of SGS No. SP2019/137, VSB Technical University of Ostrava. This work was also supported by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014), further by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh Cong Truong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Truong, T.C., Zelinka, I., Senkerik, R. (2020). Neural Swarm Virus. In: Zamuda, A., Das, S., Suganthan, P., Panigrahi, B. (eds) Swarm, Evolutionary, and Memetic Computing and Fuzzy and Neural Computing. SEMCCO FANCCO 2019 2019. Communications in Computer and Information Science, vol 1092. Springer, Cham. https://doi.org/10.1007/978-3-030-37838-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37838-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37837-0

  • Online ISBN: 978-3-030-37838-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics