Advertisement

Toxicity Management for Central Nervous System Tumors in Radiation Oncology

  • Guler Yavas
  • Gozde YaziciEmail author
Chapter
  • 37 Downloads

Abstract

Radiation therapy (RT) is used widely for the treatment of primary and metastatic brain tumors. The protection of organs at risk (OAR) in the central nervous system (CNS) is crucial, especially to preserve cognition in cancer survivors. This chapter will outline the pathophysiology of radiation-induced CNS toxicity, biologic and clinical principles of CNS tolerance to radiation, and the treatment strategies of both acute and chronic radiation-induced CNS toxicity.

Keywords

CNS radiation toxicity Radiotherapy Treatment 

References

  1. 1.
    Tillmann B. Atlas der Anatomie des Menschen. Heidelberg: Springer; 2005. p. 120–2.Google Scholar
  2. 2.
    Patestas MA, Gartner LP. A textbook of neuroanatomy. 2nd ed. Hoboken: Wiley; 2016. p. 68–83.Google Scholar
  3. 3.
    Netter FH. Atlas of human anatomy. 4th ed. Barcelona: Elsevier, Masson; 2007.Google Scholar
  4. 4.
    Felten DL, O’Banion MK, Maida MS. Spinal cord. In: Netter’s atlas of neuroscience. Amsterdam: Elsevier; 2016. p. 77–83.CrossRefGoogle Scholar
  5. 5.
    Irsch K, Guyton D. Anatomy of eyes. In: Encyclopedia of biometrics. Boston: Springer; 2009. p. 11–6.Google Scholar
  6. 6.
    Jacobson S, Marcus EM, Pugsley S. Neuroanatomy for the neuroscientist. 3rd ed. Cham: Springer; 2017. p. 3–26.Google Scholar
  7. 7.
    Duvernoy HM. Introduction. In: The human hippocampus. 3rd ed. Berlin: Springer-Verlag; 2005. p. 1.CrossRefGoogle Scholar
  8. 8.
    Kannan CR. The anatomy of the pituitary gland. In: Essential Endocrinology. Boston: Springer; 1986.CrossRefGoogle Scholar
  9. 9.
    Wright JL, Yom SS, Awan MJ, Dawes S, Fischer-Valuck B, Kudner R, Mailhot Vega R, Rodrigues G. Standardizing normal tissue contouring for radiation therapy treatment planning: an ASTRO consensus paper. Pract Radiat Oncol. 2019;9(2):65–72.PubMedCrossRefGoogle Scholar
  10. 10.
    Eekers DB, In’t Ven L, Roelofs E, Postma A, Alapetite C, Burnet NG, European Particle Therapy Network of ESTRO, et al. The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology. Radiother Oncol. 2018;128(1):37–43.PubMedCrossRefGoogle Scholar
  11. 11.
    Brouwer CL, Steenbakkers RJ, Bourhis J, Budach W, Grau C, Grégoire V, van Herk M, et al. CT-based delineation of organs at risk in the head and neck region: DAHANCA, EORTC, GORTEC, HKNPCSG, NCIC CTG, NCRI, NRG oncology and TROG consensus guidelines. Radiother Oncol. 2015;117(1):83–90.CrossRefGoogle Scholar
  12. 12.
    Sun Y, Yu XL, Luo W, Lee AW, Wee JT, Lee N, et al. Recommendation for a contouring method and atlas of organs at risk in nasopharyngeal carcinoma patients receiving intensity-modulated radiotherapy. Radiother Oncol. 2014;110(3):390–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Scoccianti S, Detti B, Gadda D, Greto D, Furfaro I, Meacci F, et al. Organs at risk in the brain and their dose-constraints in adults and in children: a radiation oncologist’s guide for delineation in everyday practice. Radiother Oncol. 2015;114(2):230–8.PubMedCrossRefGoogle Scholar
  14. 14.
    Gondi V, Tolakanahalli R, Mehta MP, Tewatia D, Rowley H, Kuo JS, et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator–based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78(4):1244–52.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Smart D. Radiation toxicity in the central nervous system: mechanisms and strategies for injury reduction. Semin Radiat Oncol. 2017;27(4):332–9.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ahles TA, Root JC, Ryan EL. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol. 2012;30:3675–86.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cox JD, Stetz J, Pajak TF. Toxicity criteria of the Radiation Therapy Oncology Group (RTOG) and the European Organization for Research and Treatment of Cancer (EORTC). Int J Radiat Oncol Biol Phys. 1995;31:1341–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kramer S, Henrickson F, Zelen M. Therapeutic trials in the management of metastatic brain tumors by different time/dose fraction schemes of radiation therapy. Natl Cancer Inst Monogr. 1977;46:213–21.PubMedGoogle Scholar
  19. 19.
    Kim JH, Brown SL, Jenrow KA, Ryu S. Mechanisms of radiation-induced brain toxicity and implications for future clinical trials. J Neuro-Oncol. 2008;87:279–86.CrossRefGoogle Scholar
  20. 20.
    Belka C, Budach W, Kortmann RD, Bamberg M. Radiation induced CNS toxicity--molecular and cellular mechanisms. Br J Cancer. 2001;85(9):1233–9.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Phillips TL. An ultrastructural study of the development of radiation injury in the lung. Radiology. 1966;87:49–54.PubMedCrossRefGoogle Scholar
  22. 22.
    Zollinger HU. Radiation vasculopathy. Pathol Eur. 1970;5:145–63.PubMedGoogle Scholar
  23. 23.
    Song H, Steven CF, Gage FH. Astroglia induce neurogenesis from adult neuronal stem cells. Nature. 2002;417:39–44.PubMedCrossRefGoogle Scholar
  24. 24.
    Seifert G, Schilling K, Steinhauser C. Astrocyte dysfunction in neurological disorders: a molecular perspective. Nat Rev Neurosci. 2006;7:194–206.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou H, Liu Z, Liu J, Wang J, Zhou D, Zhao Z, Xiao S, Tao E, Suo WZ. Fractionated radiation-induced acute encephalopathy in a young rat model: cognitive dysfunction and histologic findings. AJNR Am J Neuroradiol. 2011;32:1795–800.PubMedCrossRefGoogle Scholar
  26. 26.
    Seth P, Koul N. Astrocyte, the star avatar: redefined. J Biosci. 2008;33:405–21.PubMedCrossRefGoogle Scholar
  27. 27.
    Kyrkanides S, Olschowka JA, Williams JP, Hansen JT, O’Banion MK. TNF alpha and IL-1beta mediate intercellular adhesion molecule-1 induction via microglia-astrocyte interaction in CNS radiation injury. J Neuroimmunol. 1999;95:95–106.PubMedCrossRefGoogle Scholar
  28. 28.
    Greene-Schloesser D, Robbins ME, Peiffer AM, Shaw EG, Wheeler KT, Chan MD. Radiation-induced brain injury: a review. Front Oncol. 2012;2:73.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Lee WH, Sonntag WE, Mitschelen M, Yan H, Lee YW. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol. 2010;86:132–44.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Gangloff H, Haley TJ. Effects of X-irradiation on spontaneous and evoked brain electrical activity in cats. Radiat Res. 1960;12:694–704.PubMedCrossRefGoogle Scholar
  31. 31.
    Bassant MH, Court L. Effects of whole-body irradiation on the activity of rabbit hippocampal neurons. Radiat Res. 1978;75:593–606.PubMedCrossRefGoogle Scholar
  32. 32.
    Rosi S, Andres-Mach M, Fishman KM, Levy W, Ferguson RA, Fike JR. Cranial irradiation alters the behaviorally induced immediate-early gene arc (activity-regulated cytoskeleton associated protein). Cancer Res. 2008;68:9763–70.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Madsen TM, Kristjansen PE, Bolwig TG, et al. Arrested neuronal proliferation and impaired hippocampal function following fractionated brain irradiation in the adult rat. Neuroscience. 2003;119:635–42.PubMedCrossRefGoogle Scholar
  34. 34.
    Fike JR, Rola R, Limoli CL. Radiation response of neural precursor cells. Neurosurg Clin N Am. 2007;18:115–27.PubMedCrossRefGoogle Scholar
  35. 35.
    Tofilon PJ, Fike JR. The radioresponse of the central nervous system: a dynamic process. Radiat Res. 2000;153:357–70.PubMedCrossRefGoogle Scholar
  36. 36.
    Belka C, Rudner J, Wesselborg S, Stepczynska A, Marini P, Lepple-Wienhues A, Faltin H, Bamberg M, Budach W, Schulze-Osthoff K. Differential role of caspase-8 and BID activation during radiation-and CD95-induced apoptosis. Oncogene. 2000;19:1181–90.PubMedCrossRefGoogle Scholar
  37. 37.
    Chong MJ, Murray MR, Gosink EC, Russell HR, Srinivasan A, Kapsetaki M, Korsmeyer SJ, McKinnon PJ. Atm and Bax cooperate in ionizing radiation-induced apoptosis in the central nervous system. Proc Natl Acad Sci U S A. 2000;97:889–94.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hallahan DE, Virudachalam S. Intercellular adhesion molecule 1 knockout abrogates radiation induced pulmonary inflammation. Proc Natl Acad Sci U S A. 1997;94:6432–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Kim JH, Jenrow KA, Brown SL. Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials. Radiat Oncol J. 2014;32(3):103–15.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Sheline GE. Radiation therapy of brain tumors. Cancer. 1977;39(Supp2):873–81.PubMedCrossRefGoogle Scholar
  41. 41.
    Sundgren PC, Cao Y. Brain irradiation: effects on normal brain parenchyma and radiation injury. Neuroimaging Clin N Am. 2009;19(4):657–68.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ljubimova NV, Levitman MK, Plotnikova ED, Eidus LK. Endothelial cell population dynamics in rat brain after local irradiation. Br J Radiol. 1991;64(766):934–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Reinhold HS, Calvo W, Hopewell JW, van der Berg AP. Development of blood vessel-related radiation damage in the fimbria of the central nervous system. Int J Radiat Oncol Biol Phys. 1990;18(1):37–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Tallet AV, Azria D, Barlesi F. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7:77.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Haas-Kogan D, Indelicato D, Paganetti H, Esiashvili N, Mahajan A, Yock T, et al. National Cancer Institute workshop on proton therapy for children: considerations regarding brainstem injury. Int J Radiat Oncol Biol Phys. 2018;101(1):152–68.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rong X, Tang Y, Chen M, Lu K, Peng Y. Radiation-induced cranial neuropathy in patients with nasopharyngeal carcinoma. A follow-up study. Strahlenther Oncol. 2012;188(3):282–6.CrossRefGoogle Scholar
  47. 47.
    Fein DA, Marcus RB Jr, Parsons JT, Mendenhall WM, Million RR. Lhermitte’s sign: incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1999;27:1027–33.Google Scholar
  48. 48.
    Wara WM, Phillips TL, Sheline GE, Schwade JG. Radiation tolerance of the spinal cord. Cancer. 1975;35:1558–62.PubMedCrossRefGoogle Scholar
  49. 49.
    Gordon KB, Char DH, Sagerman RH. Late effects of radiation on the eye and ocular adnexa. Int J Radiat Oncol Biol Phys. 1995;31(5):1123–39.PubMedCrossRefGoogle Scholar
  50. 50.
    Khan DZ, Lacasse MC, Khan R, Murphy KJ. Radiation cataractogenesis: the progression of our understanding and its clinical consequences. J Vasc Interv Radiol. 2017;28(3):412–9.PubMedCrossRefGoogle Scholar
  51. 51.
    Worgul BV, Merriam GR, Medvedovsky C. Cortical cataract development: an expression of primary damage to the lens epithelium. Lens Eye Toxicity Res. 1989;6:559–71.Google Scholar
  52. 52.
    Palmer TD, Takahashi J, gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425:479–94.PubMedCrossRefGoogle Scholar
  53. 53.
    Mizumastu S, Monje M, Morhardt R, et al. Extreme sensitivity of adult neurogenesis to low doses of x-irradiation. Cancer Res. 2003;63:4021–7.Google Scholar
  54. 54.
    Sun AM, Li CG, Han YQ, Liu QL, Xia Q, Yuan YW. X-ray irradiation promotes apoptosis of hippocampal neurons through up-regulation of Cdk5 and p25. Cancer Cell Int. 2013;13(1):47.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Peissner W, Kocher M, Treuer H, Gillardon F. Ionizing radiation-induced apoptosis of proliferating stem cells in the dentate gyrus of the adult rat hippocampus. Brain Res Mol Brain Res. 1999;71:61–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Appelman-Dijkstra NM, Kokshoorn NE, Dekkers OM, Neelis KJ, Biermasz NR, Romijn JA, Smit JW, Pereira AM. Pituitary dysfunction in adult patients after cranial radiotherapy: systematic review and meta-analysis. J Clin Endocrinol Metab. 2011;96(8):2330–40.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fernandez A, Brada M, Zabuliene L, Karavitaki N, Wass JA. Radiation-induced hypopituitarism. Endocr Relat Cancer. 2009;16(3):733–72.PubMedCrossRefGoogle Scholar
  58. 58.
    Darzy KH, Shalet SM. Hypopituitarism following radiotherapy. Pituitary. 2009;12(1):40–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Rubin P, Cooper RA, Phillips TL. Radiation biology and radiation pathology syllabus. Set RT1: radiation oncology, vol. 2. Chicago: American College of Radiology; 1975. p. 2–7.Google Scholar
  60. 60.
    Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, Shank B, Solin LJ, Wesson M. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.3.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Bentzen SM, Constine LS, Deasy JO, Eisbruch A, Jackson A, Marks LB, Ten Haken RK, Yorke ED. Quantitative analyses of normal tissue effects in the clinic (QUANTEC): an introduction to the scientific issues. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S3–9.4.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, Bentzen SM, Nam J, Deasy JO. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Lawrence YR, Li XA, el Naqa I, Hahn CA, Marks LB, Merchant TE, Dicker AP. Radiation dose–volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3):S20–7.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Lambrecht M, Eekers DBP, Alapetite C, Burnet NG, Calugaru V, Coremans IEM, European Particle Therapy Network of ESTRO, et al. Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus. Radiother Oncol. 2018;128(1):26–36.PubMedCrossRefGoogle Scholar
  65. 65.
    Shaw E, Scott C, Souhami L, Dinapoli R, Kline R, Loeffler J, Farnan N. Single dose radiosurgical treatment of recurrent previously irradiated primary brain tumors and brain metastases: final report of RTOG protocol 90-05. Int J Radiat Oncol Biol Phys. 2000;47:291–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Mayo C, Yorke E, Merchant TE. Radiation associated brainstem injury. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S36–41.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lee TF, Fang FM, Chao PJ, Su TJ, Wang LK, Leung SW. Dosimetric comparisons of helical tomotherapy and step-and-shoot intensity-modulated radiotherapy in nasopharyngeal carcinoma. Radiother Oncol. 2008;89(1):89–96.PubMedCrossRefGoogle Scholar
  68. 68.
    Merchant TE, Chitti RM, Li C, Xiong X, Sanford RA, Khan RB. Factors associated with neurological recovery of brainstem function following postoperative conformal radiation therapy for infratentorial ependymoma. Int J Radiat Oncol Biol Phys. 2010;76:496–503.PubMedCrossRefGoogle Scholar
  69. 69.
    Kirkpatrick JP, van der Kogel AJ, Schultheiss TE. Radiation dose–volume effects in the spinal cord. Int J Radiat Oncol Biol Phys. 2010;76(3):S42–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Schultheiss TE, Kun LE, Ang KK, Stephens LC. Radiation response of the central nervous system. Int J Radiat Oncol Biol Phys. 1995;31(5):1093–112.PubMedCrossRefGoogle Scholar
  71. 71.
    Ryu S, Jin JY, Jin R, Rock J, Ajlouni M, Movsas B, et al. Partial volume tolerance of the spinal cord and complications of single-dose radiosurgery. Cancer. 2007;109:628–36.PubMedCrossRefGoogle Scholar
  72. 72.
    Sahgal A, Ma L, Gibbs I, Gerszten PC, Ryu S, Soltys S, et al. Spinal cord tolerance for stereotactic body radiotherapy. Int J Radiat Oncol Biol Phys. 2010;77:548–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Ryu S, Pugh SL, Gerszten PC, Yin FF, Timmerman RD, Hitchcock YJ, Movsas B, Kanner AA, Berk LB, Followill DS, Kachnic LA. RTOG 0631 phase II/III study of image-guided stereotactic radiosurgery for localized (1-3) spine metastases: phase II results. Int J Radiat Oncol Biol Phys. 2011;81(2):S131–2.PubMedCrossRefGoogle Scholar
  74. 74.
    Jeganathan VSE, Wirth A, MacManus MP. Ocular risks from orbital and periorbital radiation therapy: a critical review. Int J Radiat Oncol. 2011;79:650–9.CrossRefGoogle Scholar
  75. 75.
    Kozelsky TF, Garrity JA, Kurtin PJ, Leavitt JA, Martenson JA, Habermann TM. Orbital lymphoma: radiotherapy outcome and complications. Radiother Oncol. 2001;59:139–44.PubMedCrossRefGoogle Scholar
  76. 76.
    Parsons JT, Bova FJ, Mendenhall WM, Million RR, Fitzgerald CR. Response of the normal eye to high dose radiotherapy. Oncology (Williston Park). 1996;10:837–47.Google Scholar
  77. 77.
    Smith GT, Deutsch GP, Cree IA, Liu CS. Permanent corneal limbal stem cell dysfunction following radiotherapy for orbital lymphoma. Eye (Lond). 2000;14:905–7.CrossRefGoogle Scholar
  78. 78.
    Stewart FA, Akleyev AV, Hauer-Jensen M, Hendry JH, Kleiman NJ, MacVittie TJ, et al. ICRP PUBLICATION 118: ICRP statement on tissue reactions and early and late effects of radiation in normal tissues and organs—threshold doses for tissue reactions in a radiation protection context. Ann ICRP. 2012;41:1–322.PubMedCrossRefGoogle Scholar
  79. 79.
    Forrest AP, Brown DAP, Morris SR, Illingsworth CF. Pituitary radon implant for advanced cancer. Lancet (London, England). 1956;270:399–401.CrossRefGoogle Scholar
  80. 80.
    Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3):S28–35.PubMedCrossRefGoogle Scholar
  81. 81.
    Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol Biol Phys. 2013;85:348–54.CrossRefGoogle Scholar
  82. 82.
    Gondi V, Pugh SL, Tome WA, Caine C, Corn B, Kanner A, Rowley H, et al. Preservation of memory with conformal avoidance of the hippocampal neural stem-cell compartment during whole brain radiotherapy for brain metastases (RTOG 0933): a phase II multi-institutional trial. J Clin Oncol. 2014;32:3810–6.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Marek J, Jezková J, Hána V, Krsek M, Bandúrová L, Pecen L, Vladyka V, Liscák R. Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife? Eur J Endocrinol. 2011;164:169–78.PubMedCrossRefGoogle Scholar
  84. 84.
    Powell C, Guerrero D, Sardell S, Cumins S, Wharram B, Traish D, Gonsalves A, Ashley S, Brada M. Somnolence syndrome in patients receiving radical radiotherapy for primary brain tumours: a prospective study. Radiother Oncol. 2011;100(1):131–6.PubMedCrossRefGoogle Scholar
  85. 85.
    Faithfull S, Brada M. Somnolence syndrome in adults following cranial irradiation for primary brain tumours. Clin Oncol (R Coll Radiol). 1998;10:250–4.CrossRefGoogle Scholar
  86. 86.
    Minton O, Richardson A, Sharpe M, Hotopf M, Stone P. A systematic review and meta-analysis of the pharmacological treatment of cancer-related fatigue. J Natl Cancer Inst. 2008;100:1155–66.PubMedCrossRefGoogle Scholar
  87. 87.
    Butler JM Jr, Case LD, Atkins J, Frizzell B, Sanders G, Griffin P, Lesser G, et al. A phase III, double-blind, placebo-controlled prospective randomized clinical trial of d-threo-methylphenidate HCl in brain tumor patients receiving radiation therapy. Int J Radiat Oncol Biol Phys. 2007;69(5):1496–501.PubMedCrossRefGoogle Scholar
  88. 88.
    Breitbart W, Alici Y. Psychostimulants for cancer-related fatigue. J Natl Compr Cancer Netw. 2010;8(8):933–42.CrossRefGoogle Scholar
  89. 89.
    Shaw EG, Robbins ME. The management of radiation-induced brain injury. Cancer Treat Res. 2006;128:7–22.PubMedCrossRefGoogle Scholar
  90. 90.
    Lawenda BD, Gagne HM, Gierga DP, Niemierko A, Wong WM, Tarbell NJ, Chen GT, Hochberg FH, Loeffler JS. Permanent alopecia after cranial irradiation: dose-response relationship. Int J Radiat Oncol Biol Phys. 2004;60(3):879.PubMedCrossRefGoogle Scholar
  91. 91.
    Wei J, Meng L, Xue H, Chao Q, Wang B, Xin Y, Jiang X. Radiation-induced skin reactions: mechanism and treatment. Cancer Manag Res. 2019;11:167–77.PubMedCrossRefGoogle Scholar
  92. 92.
    Winter SF, Loebel F, Loeffler J, Batchelor TT, Martinez-Lage M, Vajkoczy P, Dietrich J. Treatment-induced brain tissue necrosis: a clinical challenge in neuro-oncology. Neuro-Oncology. 2019;21:1118.Google Scholar
  93. 93.
    Lubelski D, Abdullah KG, Weil RJ, Marko NF. Bevacizumab for radiation necrosis following treatment of high grade glioma: a systematic review of the literature. J Neuro-Oncol. 2013;115(3):317–22.CrossRefGoogle Scholar
  94. 94.
    Tye K, Engelhard HH, Slavin KV, et al. An analysis of radiation necrosis of the central nervous system treated with bevacizumab. J Neuro-Oncol. 2014;117(2):321–7.CrossRefGoogle Scholar
  95. 95.
    Glantz MJ, Burger PC, Friedman AH, Radtke RA, Massey EW, Schold SC Jr. Treatment of radiation-induced nervous system injury with heparin and warfarin. Neurology. 1994;44(11):2020.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Chuba PJ, Aronin P, Bhambhani K, Eichenhorn M, Zamarano L, Cianci P, Muhlbauer M, Porter AT, Fontanesi J. Hyperbaric oxygen therapy for radiation-induced brain injury in children. Cancer. 1997;80(10):2005.PubMedCrossRefGoogle Scholar
  97. 97.
    Wilke C, Grosshans D, Duman J, Brown P, Li J. Radiation-induced cognitive toxicity: pathophysiology and interventions to reduce toxicity in adults. Neuro-Oncology. 2018;20(5):597–607.PubMedCrossRefGoogle Scholar
  98. 98.
    Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF, Kornguth DG, Arbuckle RB, Swint JM, Shiu AS, Maor MH, Meyers CA. Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol. 2009;10(11):1037–44.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Li J, Bentzen SM, Renschler M, Mehta MP. Regression after whole-brain radiation therapy for brain metastases correlates with survival and improved neurocognitive function. J Clin Oncol. 2007;25(10):1260–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Meyers CA, Smith JA, Bezjak A, Mehta MP, Liebmann J, Illidge T, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol. 2004;22(1):157–65.PubMedCrossRefGoogle Scholar
  101. 101.
    Rock JP, Ryu S, Yin FF, Schreiber F, Abdulhak M. The evolving role of stereotactic radiosurgery and stereotactic radiation therapy for patients with spine tumors. J Neuro-Oncol. 2004;69(1–3):319–34.CrossRefGoogle Scholar
  102. 102.
    Fein DA, Marcus RB Jr, Parsons JT, Mendenhall WM, Million RR. Lhermitte’s sign: incidence and treatment variables influencing risk after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1993;27(5):1029.PubMedCrossRefGoogle Scholar
  103. 103.
    Leung WM, Tsang NM, Chang FT, Lo CJ. Lhermitte’s sign among nasopharyngeal cancer patients after radiotherapy. Head Neck. 2007;27(3):187.CrossRefGoogle Scholar
  104. 104.
    Jiang J, Li Y, Shen Q, Rong X, Huang X, Li H, Zhou L, Mai HQ, et al. Effect of pregabalin on radiotherapy-related neuropathic pain in patients with head and neck cancer: a randomized controlled trial. J Clin Oncol. 2019;37(2):135–43.PubMedCrossRefGoogle Scholar
  105. 105.
    Levin VA, Bidaut L, Hou P, Kumar AJ, Wefel JS, Bekele BN, Grewal J, Prabhu S, Loghin M, Gilbert MR, Jackson EF. Randomized double-blind placebo-controlled trial of bevacizumab therapy for radiation necrosis of the central nervous system. Int J Radiat Oncol Biol Phys. 2011;79(5):1487–95.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Andratschke NH, Nieder C, Price RE, Rivera B, Ang KK. Potential role of growth factors in diminishing radiation therapy neural tissue injury. Semin Oncol. 2005;32(2 Suppl 3):S67.PubMedCrossRefGoogle Scholar
  107. 107.
    Esik O, Vönöczky K, Lengyel Z, Sáfrány G, Trón L. Characteristics of radiogenic lower motor neurone disease, a possible link with a preceding viral infection. Spinal Cord. 2004;42(2):99–105.PubMedCrossRefGoogle Scholar
  108. 108.
    Allen JC, Miller DC, Budzilovich GN, Epstein FJ. Brain and spinal cord hemorrhage in long-term survivors of malignant pediatric brain tumors: a possible late effect of therapy. Neurology. 1991;41(1):148.PubMedCrossRefGoogle Scholar
  109. 109.
    Jabbour P, Gault J, Murk SE, Awad IA. Multiple spinal cavernous malformations with atypical phenotype after prior irradiation: case report. Neurosurgery. 2004;55(6):1431.PubMedCrossRefGoogle Scholar
  110. 110.
    Moore J, de Silva SR, O'Hare K, Humphry RC. Ruby laser for the treatment of trichiasis. Lasers Med Sci. 2009;24:137–9.PubMedCrossRefGoogle Scholar
  111. 111.
    Tseng SC. Topical tretinoin treatment for severe dry-eye disorders. J Am Acad Dermatol. 1986;15:860–6.PubMedCrossRefGoogle Scholar
  112. 112.
    Doughty MJ, Glavin S. Efficacy of different dry eye treatments with artificial tears or ocular lubricants: a systematic review. Ophthalmic Physiol Opt. 2009;29:573–83.PubMedCrossRefGoogle Scholar
  113. 113.
    Shtein RM, Shen JF, Kuo AN, Hammersmith KM, Li JY, Weikert MP. Autologous serum-based eye drops for treatment of ocular surface disease: a report by the American Academy of ophthalmology. Ophthalmology. 2019.  https://doi.org/10.1016/j.ophtha.2019.08.018.
  114. 114.
    Durkin SR, Roos D, Higgs B, Casson RJ, Selva D. Ophthalmic and adnexal complications of radiotherapy. Acta Ophthalmol Scand. 2007;85(3):240–50.PubMedCrossRefGoogle Scholar
  115. 115.
    Merriam GRSA, Focht EF. The effects of ionizing radiations on the eye. Radiat Ther Oncol. 1972;6:346–85.CrossRefGoogle Scholar
  116. 116.
    Belkacemi Y, Ozsahin M, Pène F, Rio B, Laporte JP, Leblond V, Touboul E, Schlienger M, Gorin NC, Laugier A. Cataractogenesis after total body irradiation. Int J Radiat Oncol Biol Phys. 1996;35:53–60.PubMedCrossRefGoogle Scholar
  117. 117.
    Gall N, Leiba H, Handzel R, Pe'er J. Severe radiation retinopathy and optic neuropathy after brachytherapy for choroidal melanoma, treated by hyperbaric oxygen. Eye (Lond). 2007;21:1010–2.CrossRefGoogle Scholar
  118. 118.
    Wen JC, McCannel TA. Treatment of radiation retinopathy following plaque brachytherapy for choroidal melanoma. Curr Opin Ophthalmol. 2009;20:200–4.PubMedCrossRefGoogle Scholar
  119. 119.
    Forrest AW. Tumors following radiation about the eye. Trans Am Acad Ophthalmol Otolaryngol. 1961;65:694–717.PubMedGoogle Scholar
  120. 120.
    Mehta MP, Rodrigus P, Terhaard CH, Rao A, Suh J, Roa W, Souhami L, et al. Survival and neurologic outcomes in a randomized trial of motexafin gadolinium and whole-brain radiation therapy in brain metastases. J Clin Oncol. 2003;21:2529.PubMedCrossRefGoogle Scholar
  121. 121.
    Rooney JW, Laack NN. Pharmacological interventions to treat or prevent neurocognitive decline after brain radiation. CNS Oncol. 2013;2(6):531–41.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Orrego F, Villanueva S. The chemical nature of the main central excitatory transmitter: a critical appraisal based upon release studies and synaptic vesicle localization. Neuroscience. 1993;56:539–55.PubMedCrossRefGoogle Scholar
  123. 123.
    Tariot PN, Farlow MR, Grossberg GT, Graham SM, McDonald S, Gergel I, Memantine Study Group. Memantine treatment in patients with moderate to severe Alzheimer disease already receiving donepezil: a randomized controlled trial. JAMA. 2004;291(3):317–24.PubMedCrossRefGoogle Scholar
  124. 124.
    Wilcock G, Möbius HJ, Stöffler A, MMM 500 Group. A double-blind, placebo-controlled multicentre study of memantine in mild to moderate vascular dementia (MMM500). Int Clin Psychopharmacol. 2002;17(6):297–305.PubMedCrossRefGoogle Scholar
  125. 125.
    Brown PD, Pugh S, Laack NN, Wefel JS, Khuntia D, Meyers C, et al. Memantine for the prevention of cognitive dysfunction in patients receiving whole-brain radiotherapy: a randomized, double-blind, placebo-controlled trial. Neuro-Oncology. 2013;15(10):1429–37.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Malouf R, Birks J. Donepezil for vascular cognitive impairment. Cochrane Database Syst Rev. 2004;1:CD004395.Google Scholar
  127. 127.
    Shaw EG, Rosdhal R, D'Agostino RB Jr, Rosdhal R, D'Agostino RB Jr, Lovato J, Naughton MJ, Robbins ME, Rapp SR. Phase II study of donepezil in irradiated brain tumor patients: effect on cognitive function, mood, and quality of life. J Clin Oncol. 2006;24:1415.PubMedCrossRefGoogle Scholar
  128. 128.
    Rapp SR, Case LD, Peiffer A, Naughton MM, Chan MD, Stieber VW. Donepezil for irradiated brain tumor survivors: a phase III randomized placebo-controlled clinical trial. J Clin Oncol. 2015;33(15):1653–9.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sklar CA, Antal Z, Chemaitilly W, Cohen LE, Follin C, Meacham LR, Murad MH. Hypothalamic-pituitary and growth disorders in survivors of childhood cancer: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2018;103(8):2761.CrossRefGoogle Scholar
  130. 130.
    Palmert MR, Dunkel L. Clinical practice. Delayed puberty. N Engl J Med. 2012;366(5):443–53.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Medicine, Department of Radiation OncologySelcuk Meram UniversityKonyaTurkey
  2. 2.Hacettepe University, Faculty of Medicine, Department of Radiation OncologyAnkaraTurkey

Personalised recommendations