Advertisement

Diffusion Kinetics in Binary Liquid Alloys with Ordering and Demixing Tendencies

  • Andreas Kromik
  • E. V. LevchenkoEmail author
  • Alexander V. Evteev
Chapter
  • 43 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 296)

Abstract

Theoretical relationship between collective and tracer diffusion coefficients has been derived and tested for different types of binary melts: (i) with an ordering tendency (case study on Ni–Al and Ni–Zr melts) and (ii) with a demixing tendency (case study on Cu–Ag melts). The obtained relationship explicitly demonstrates microscopic cross-correlation effects in the kinetics of collective diffusion. Our approach incorporates molecular dynamics calculations, modelling and statistical mechanical analysis based on fundamental concepts of the fluctuation-dissipation theorem, generalized Langevin equation and Mori-Zwanzig formalism. We also applied the developed theory to interpret recent available experimental data as well as our molecular dynamics data of diffusion kinetics in different types of binary melts: with chemical ordering and contrarily with demixing tendency.

Keywords

Diffusion coefficients Ni–Al liquid alloy Cu–Ag liquid alloy Ni–Zr liquid alloy Fluctuation-dissipation theorem 

Notes

Acknowledgements

This research was supported by the Australian Research Council through its Discovery Project Grants Scheme and Priority Research Center for Computer-Assisted Research Mathematics and Its Applications at the University of Newcastle.

References

  1. 1.
    S.W. Basuki, A. Bartsch, F. Yang, K. Ratzke, A. Meyer, F. Faupel, Decoupling of component diffusion in a glass-forming Zr46.75 Ti8.25 Cu7.5 Ni10 Be27.5 melt far above the liquidus temperature. Phys. Rev. Lett. 113(16), 165901 (2014).  https://doi.org/10.1103/physrevlett.113.165901
  2. 2.
    K. Georgarakis, A.R. Yavari, M. Aljerf, D.V. Louzguine-Luzgin, M. Stoica, G. Vaughan, A. Inoue, On the atomic structure of Zr–Ni and Zr–Ni–Al metallic glasses. J. Appl. Phys. 108(2) (2010).  https://doi.org/10.1063/1.3446131CrossRefGoogle Scholar
  3. 3.
    R. Kobold, W.W. Kuang, H. Wang, W. Hornfeck, M. Kolbe, D.M. Herlach, Dendrite growth velocity in the undercooled melt of glass forming Ni50 Zr50 compound. Philos. Mag. Lett. 97(6), 249–256 (2017).  https://doi.org/10.1080/09500839.2017.1330561CrossRefGoogle Scholar
  4. 4.
    T. Voigtmann, A. Meyer, D. Holland-Moritz, S. Stüber, Hansen, T., Unruh, T.: Atomic diffusion mechanisms in a binary metallic melt. EPL (Europhys Lett) 82(6) (2008).  https://doi.org/10.1209/0295-5075/82/66001CrossRefGoogle Scholar
  5. 5.
    S.K. Yadav, S. Lamichhane, L.N. Jha, N.P. Adhikari, D. Adhikari, Mixing behaviour of Ni–Al melt at 1873 K. Phys. Chem. Liq. 54(3), 370–383 (2016).  https://doi.org/10.1080/00319104.2015.1095640CrossRefGoogle Scholar
  6. 6.
    O. Bystrenko, V. Kartuzov, Interface structure and contact melting in AgCu eutectic. A molecular dynamics study. Mater. Res. Express 4(12), 126503 (2017).  https://doi.org/10.1088/2053-1591/aa9b63CrossRefGoogle Scholar
  7. 7.
    V. Olufemi Ogunrinde, Y. Odusote, A.I. Popoola, Correlation between thermodynamic and surface properties of liquid Ag–Cu and Cd–Ga binary alloys. J. Sci. Technol. Res. 1, 1–13 (2019)Google Scholar
  8. 8.
    T. Böhme, Mechanical and thermodynamic materials Properties derived by semi-empirical atomic potentials with special focus on Ag, Cu, and the binary alloy Ag–Cu, in New Achievements in Continuum Mechanics and Thermodynamics: A Tribute to Wolfgang H. Müller, ed. by B.E. Abali, H. Altenbach, F. dell’Isola, V.A. Eremeyev, A. Öchsner (Springer International Publishing, Cham, 2019), pp. 51–70Google Scholar
  9. 9.
    W.J. Boettinger, J.A. Warren, C. Beckermann, A. Karma, Phase-field simulation of solidification. Ann. Rev. Mater. Res. 32(1), 163–194 (2002).  https://doi.org/10.1146/annurev.matsci.32.101901.155803CrossRefGoogle Scholar
  10. 10.
    M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, R. Trivedi, Solidification microstructures and solid-state parallels: recent developments, future directions. Acta Materialia 57 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Meyer, Atomic transport in dense multicomponent metallic liquids. Phys. Rev. B 66(13), 134205 (2002).  https://doi.org/10.1103/PhysRevB.66.134205CrossRefGoogle Scholar
  12. 12.
    J. Horbach, A. Griesche, M.-P. Macht, G. Frohberg, A. Meyer, Self-diffusion and interdiffusion in Al80 Ni20 melts: simulation and experiment. Phys. Rev. 75, 1–8 (2007)Google Scholar
  13. 13.
    S. Stüber, D. Holland-Moritz, T. Unruh, A. Meyer, Ni self-diffusion in refractory Al–Ni melts. Phys. Rev. B 81(2) (2010).  https://doi.org/10.1103/physrevb.81.024204
  14. 14.
    B. Zhang, A. Griesche, A. Meyer, Diffusion in Al–Cu melts studied by time-resolved X-ray radiography. Phys. Rev. Lett. 104(3), 035902 (2010).  https://doi.org/10.1103/PhysRevLett.104.035902CrossRefGoogle Scholar
  15. 15.
    J. Brillo, A.I. Pommrich, A. Meyer, Relation between self-diffusion and viscosity in dense liquids: new experimental results from electrostatic levitation. Phys. Rev. Lett. 107(16), 165902 (2011).  https://doi.org/10.1103/PhysRevLett.107.165902CrossRefGoogle Scholar
  16. 16.
    F. Kargl, M. Engelhardt, F. Yang, H. Weis, P. Schmakat, B. Schillinger, A. Griesche, A. Meyer, In situ studies of mass transport in liquid alloys by means of neutron radiography. J. Phys.: Condens. Matter 23(25), 254201 (2011).  https://doi.org/10.1088/0953-8984/23/25/254201CrossRefGoogle Scholar
  17. 17.
    E. Sondermann, F. Kargl, A. Meyer, Influence of cross correlations on interdiffusion in Al-rich Al–Ni melts. Phys. Rev. B 93(18), 184201 (2016)CrossRefGoogle Scholar
  18. 18.
    F. Kargl, E. Sondermann, H. Weis, A. Meyer, Impact of convective flow on long-capillary chemical diffusion studies of liquid binary alloys. High Temp. High Press. 42, 3–21 (2013)Google Scholar
  19. 19.
    P. Kuhn, J. Horbach, F. Kargl, A. Meyer, T. Voigtmann, Diffusion and interdiffusion in binary metallic melts. Phys. Rev. B 90(2) (2014).  https://doi.org/10.1103/physrevb.90.024309
  20. 20.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press Inc., NY, 2001)Google Scholar
  21. 21.
    R. Kubo, The fluctuation-dissipation theorem. J. Rep. Prog. Phys. 29, 255–284 (1966)CrossRefGoogle Scholar
  22. 22.
    R. Zwanzig, Statistical Mechanics of Irreversibility. Lect. Theor. Phys. 3, 106–141 (1961)Google Scholar
  23. 23.
    R. Zwanzig, Memory effects in irreversible thermodynamics. Phys. Rev. 124(4), 983–992 (1961).  https://doi.org/10.1103/PhysRev.124.983CrossRefGoogle Scholar
  24. 24.
    H. Mori, Transport, collective motion, and Brownian motion. Prog. Teor. Phys. 33, 423–455 (1965)CrossRefGoogle Scholar
  25. 25.
    H. Mori, Continued fraction representation of the time correlation functions. Prog. Teor. Phys. 34, 399–416 (1965)CrossRefGoogle Scholar
  26. 26.
    L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems. Trans. AIME 175, 184–194 (1948)Google Scholar
  27. 27.
    J.R. Manning, Diffusion in a chemical concentration gradient. Phys. Rev. 124(2), 470–482 (1961).  https://doi.org/10.1103/PhysRev.124.470CrossRefGoogle Scholar
  28. 28.
    H. Mehrer, Diffusion in Solids. Springer, Berlin (2007).  https://doi.org/10.1007/978-3-540-71488-0CrossRefGoogle Scholar
  29. 29.
    L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931).  https://doi.org/10.1103/PhysRev.37.405CrossRefGoogle Scholar
  30. 30.
    L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265–2279 (1931).  https://doi.org/10.1103/PhysRev.38.2265CrossRefGoogle Scholar
  31. 31.
    E.V. Levchenko, A.V. Evteev, T. Ahmed, A. Kromik, R. Kozubski, I.V. Belova, Z.-K. Liu, G.E. Murch, Influence of the interatomic potential on thermotransport in binary liquid alloys: case study on NiAl. Phil. Mag. 96(29), 3054–3074 (2016).  https://doi.org/10.1080/14786435.2016.1223893CrossRefGoogle Scholar
  32. 32.
    J.P. Hansen, I.R. McDonald, Preface to the third edition. In: Theory of Simple Liquids, 3rd edn. (Academic Press, Burlington, 2006), p. vCrossRefGoogle Scholar
  33. 33.
    A.V. Evteev, E.V. Levchenko, L. Momenzadeh, Y. Sohn, I.V. Belova, G.E. Murch, Molecular dynamics study of phonon-mediated thermal transport in a Ni50Al50 melt: case analysis of the influence of the process on the kinetics of solidification. Phil. Mag. 95(1), 90–111 (2015).  https://doi.org/10.1080/14786435.2014.984006CrossRefGoogle Scholar
  34. 34.
    A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.-K. Liu, G.E. Murch, Thermotransport in binary system: case study on Ni50Al50 melt. Phil. Mag. 94(31), 3574–3602 (2014).  https://doi.org/10.1080/14786435.2014.965236CrossRefGoogle Scholar
  35. 35.
    R. Zwanzig, Time-correlation functions and transport coefficients in statistical mechanics. Annu. Rev. Phys. Chem. 16, 67–102 (1965)CrossRefGoogle Scholar
  36. 36.
    A. Kromik, E.V. Levchenko, C. Massobrio, A.V. Evteev, Diffusion in Ni–Zr melts: insights from statistical mechanics and atomistic modeling. Adv. Theory Simul. (1800109), 1800109-1800101-1800109-1800114 (2018).  https://doi.org/10.1002/adts.201800109CrossRefGoogle Scholar
  37. 37.
    G.P. Purja Pun, Y. Mishin, Development of an interatomic potential for the Ni–Al system. Phil. Mag. 89(34–36), 3245–3267 (2009).  https://doi.org/10.1080/14786430903258184CrossRefGoogle Scholar
  38. 38.
    M.S. Green, Markoff random processes and the statistical mechanics of time‐dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954).  https://doi.org/10.1063/1.1740082CrossRefGoogle Scholar
  39. 39.
    E.V. Levchenko, T. Ahmed, A.V. Evteev, Composition dependence of diffusion and thermotransport in Ni–Al melts: a step towards molecular dynamics assisted databases. Acta Mater. 136, 74–89 (2017).  https://doi.org/10.1016/j.actamat.2017.06.056CrossRefGoogle Scholar
  40. 40.
    L. Verlet, Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159(1), 98–103 (1967).  https://doi.org/10.1103/physrev.159.98CrossRefGoogle Scholar
  41. 41.
    P.L. Williams, Y. Mishin, J.C. Hamilton, An embedded-atom potential for the Cu–Ag system. Modell. Simul. Mater. Sci. Eng. 14(5), 817–833 (2006).  https://doi.org/10.1088/0965-0393/14/5/002CrossRefGoogle Scholar
  42. 42.
    J.G. Kirkwood, F.P. Buff, The statistical mechanical theory of solutions. I. J. Chem. Phys. 19(6), 774–777 (1951).  https://doi.org/10.1063/1.1748352CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andreas Kromik
    • 1
  • E. V. Levchenko
    • 2
    Email author
  • Alexander V. Evteev
    • 1
    • 2
  1. 1.School of Engineering, Priority Research Centre for Computer-Assisted Research Mathematics and Its Applications (CARMA)The University of NewcastleCallaghanAustralia
  2. 2.School of Mathematical and Physical Sciences, CARMAThe University of NewcastleCallaghanAustralia

Personalised recommendations