Advertisement

Enhancing the Flexibility of First Principles Simulations of Materials via Wavelets

  • Laura E. RatcliffEmail author
  • Luigi Genovese
Chapter
  • 47 Downloads
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 296)

Abstract

We illustrate how the properties of a Daubechies wavelet basis set can be exploited to build an effective computational method that enables one to perform electronic structure calculations of systems containing up to many thousands of atoms. This is achieved by implementing a ladder of approaches of different scaling behaviours and decreasing computational complexity. We will explain that such an approach is suitable both for extended systems and for systems with molecular character. We define quantitative indicators that provide guidelines to the end-user about the pertinence of the employed methodology, thereby guaranteeing limited impact on the precision of the result. We provide a quantitative illustration of these concepts to defective systems with an extended character, by presenting the differences in computational walltime and in precision among the various methodological steps of the ladders.

Notes

Acknowledgements

LER acknowledges an EPSRC Early Career Research Fellowship (EP/P033253/1) and the Thomas Young Centre under grant number TYC-101. We are grateful to the UK Materials and Molecular Modelling Hub for computational resources, which is partially funded by EPSRC (EP/P020194/1). Calculations were also performed on the Imperial College High Performance Computing Service and the ARCHER UK National Supercomputing Service.

References

  1. 1.
    P. Hohenberg, W. Kohn, Phys. Rev. 136(3B), B864 (1964)CrossRefGoogle Scholar
  2. 2.
    W. Kohn, L.J. Sham, Phys. Rev. 140(4A), A1133 (1965)CrossRefGoogle Scholar
  3. 3.
    S. Goedecker, Rev. Mod. Phys. 71, 1085 (1999)CrossRefGoogle Scholar
  4. 4.
    D.R. Bowler, T. Miyazaki, Rep. Prog. Phys. 75(3), 036503 (2012)CrossRefGoogle Scholar
  5. 5.
    L.E. Ratcliff, S. Mohr, G. Huhs, T. Deutsch, M. Masella, L. Genovese, WIREs Comput. Mol. Sci. 7(1), e1290 (2017)CrossRefGoogle Scholar
  6. 6.
    L. Genovese, A. Neelov, S. Goedecker, T. Deutsch, S.A. Ghasemi, A. Willand, D. Caliste, O. Zilberberg, M. Rayson, A. Bergman, R. Schneider, J. Chem. Phys. 129(1), 014109 (2008)CrossRefGoogle Scholar
  7. 7.
    I. Daubechies, Ten Lectures on Wavelets (SIAM, 1992)Google Scholar
  8. 8.
    A. Willand, Y.O. Kvashnin, L. Genovese, A. Vázquez-Mayagoitia, A.K. Deb, A. Sadeghi, T. Deutsch, S. Goedecker, J. Chem. Phys. 138(10), 104109 (2013)CrossRefGoogle Scholar
  9. 9.
    E. Hernández, M.J. Gillan, Phys. Rev. B 51(15), 10157 (1995)CrossRefGoogle Scholar
  10. 10.
    C.K. Skylaris, P.D. Haynes, A.A. Mostofi, M.C. Payne, J. Chem. Phys. 122(8), 84119 (2005)CrossRefGoogle Scholar
  11. 11.
    D.R. Bowler, T. Miyazaki, J. Phys.: Condens. Matter 22(7), 074207 (2010)Google Scholar
  12. 12.
    J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing, J. Hutter, Comput. Phys. Commun. 167(2), 103 (2005)CrossRefGoogle Scholar
  13. 13.
    J.M. Soler, E. Artacho, J.D. Gale, A. García, J. Junquera, P. Ordejón, D. Sánchez-Portal, J. Phys.: Condens. Matter 14(11), 2745 (2002)Google Scholar
  14. 14.
    S. Mohr, L.E. Ratcliff, P. Boulanger, L. Genovese, D. Caliste, T. Deutsch, S. Goedecker, J. Chem. Phys. 140(20), 204110 (2014)CrossRefGoogle Scholar
  15. 15.
    S. Mohr, L.E. Ratcliff, L. Genovese, D. Caliste, P. Boulanger, S. Goedecker, T. Deutsch, Phys. Chem. Chem. Phys. 17, 31360 (2015)CrossRefGoogle Scholar
  16. 16.
    L.E. Ratcliff, L. Genovese, S. Mohr, T. Deutsch, J. Chem. Phys. 142(23), 234105 (2015)CrossRefGoogle Scholar
  17. 17.
    L.E. Ratcliff, L. Grisanti, L. Genovese, T. Deutsch, T. Neumann, D. Danilov, W. Wenzel, D. Beljonne, J. Cornil, J. Chem. Theory Comput. 11(5), 2077 (2015)CrossRefGoogle Scholar
  18. 18.
    L.E. Ratcliff, L. Genovese, J. Phys.: Condens. Matter 31(28), 285901 (2019)Google Scholar
  19. 19.
    S. Mohr, M. Masella, L.E. Ratcliff, L. Genovese, J. Chem. Theory Comput. 13(9), 4079 (2017)CrossRefGoogle Scholar
  20. 20.
    G. Wahba, SIAM Rev. 7(3), 409 (1965)CrossRefGoogle Scholar
  21. 21.
    W. Kabsch, Acta Crystallogr. A 34(5), 827 (1978)CrossRefGoogle Scholar
  22. 22.
    F.L. Markley, J. Astronaut. Sci. 36(3), 245 (1988)Google Scholar
  23. 23.
    S. Mohr, M. Eixarch, M. Amsler, M.J. Mantsinen, L. Genovese, J. Nucl. Mater. 15, 64 (2018)Google Scholar
  24. 24.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)CrossRefGoogle Scholar
  25. 25.
    C. Hartwigsen, S. Goedecker, J. Hutter, Phys. Rev. B 58, 3641 (1998)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Univ. Grenoble Alpes, CEAGrenobleFrance

Personalised recommendations