Hydrogen in Silicon: Evidence of Independent Monomeric States

  • V. V. VoronkovEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 296)


The data on hydrogen in saturated/quenched samples and in samples exposed to plasma have been revisited. It is concluded that the monomeric hydrogen in intrinsic silicon is represented mostly by two neutral species: Hb (presumably a ground state of tetrahedral hydrogen) and Hs (a slow monomer in a different interstitial position). At high T these species are in equilibrium, with a concentration ratio close to 1. At lower T (at least at T ≤ 500 °C) they become independent one of the other. This conclusion differs from a conventional notion that considers bond-centred H+(BC) ions to be dominant in intrinsic Si. In p-Si, boron is passivated not only by H+(BC) ions (denoted H+(1)) but also by another kind of H+ denoted H+(2). A presence of several independent species (Hb, Hs, H+(1) and H+(2)) gives rise to a rich variety of hydrogen depth profiles in plasma-exposed silicon; these profiles are well reproduced by simulations.


  1. 1.
    J.I. Pankove, R.O. Wance, J.E. Berkeyheiser, Appl. Phys. Lett. 45, 1100 (1984)CrossRefGoogle Scholar
  2. 2.
    S.J. Pearton, J.W. Corbett, M. Stavola, Hydrogen in Crystalline Semiconductors (Springer, Berlin, 1991)Google Scholar
  3. 3.
    C. Herring, N.M. Johnson, Semiconductors Semimetals 34, 225 (1991)CrossRefGoogle Scholar
  4. 4.
    C. Herring, N.M. Johnson, C.G. Van de Walle, Phys. Rev. B 64, 125209 (2001)CrossRefGoogle Scholar
  5. 5.
    S. Wilking, A. Herguth, G. Hahn, J. Appl. Phys. 113, 194503 (2013)CrossRefGoogle Scholar
  6. 6.
    N. Nampalli, B.J. Hallam, C.E. Chan, M.D. Abbott, S.R. Wenham, IEEE J. Photovoltaics 5, 1580 (2015)CrossRefGoogle Scholar
  7. 7.
    S.K. Estreicher, M. Stavola , J. Weber Silicon, Germanium, and Their Alloys: Defects, Impurities and Nanocrystals, eds by G. Kissinger, S. Pizzini (CRC Press, 2014) (Ch. 7)Google Scholar
  8. 8.
    V.V. Voronkov, R. Falster, Phys. Status Solidi A 214(7), 1700287 (2017)CrossRefGoogle Scholar
  9. 9.
    V.V. Voronkov, R. Falster, Phys. Status Solidi B 254(6), 1600779 (2017)CrossRefGoogle Scholar
  10. 10.
    R.E. Pritchard, M.A. Ashwin, J.H. Tucker, R.C. Newman, Phys. Rev. B 57, R15048 (1998)CrossRefGoogle Scholar
  11. 11.
    R.E. Pritchard, J.H. Tucker, R.C. Newman, E.C. Lightowlers, Semicond. Sci. Technol. 14, 77 (1999)CrossRefGoogle Scholar
  12. 12.
    S.A. McQuaid, M.J. Binns, R.C. Newman, E.C. Lightowlers, J.B. Clegg, Appl. Phys. Lett. 62, 1612 (1003)Google Scholar
  13. 13.
    M.J. Binns, R.C. Newman, S.A. McQuaid, E.C. Lightowlers, Mater. Sci. Forum 143–147, 861 (1994)Google Scholar
  14. 14.
    T. Ichimiya, A. Furuichi, Int. J. Appl. Radiat. Isot. 19, 573 (1968)CrossRefGoogle Scholar
  15. 15.
    A. Van Wieringen, N. Warmoltz, Physica 22, 849 (1956)CrossRefGoogle Scholar
  16. 16.
    J.T. Boremstein, J.W. Corbett, S.J. Pearton, J. Appl. Phys. 73, 2751 (1993)CrossRefGoogle Scholar
  17. 17.
    N.M. Johnson, F.A. Ponce, R.A. Street, R.J. Nemanich, Phys. Rev. B 35, 4166 (1987)CrossRefGoogle Scholar
  18. 18.
    N.M. Johnson, C. Herring, Phys. Rev. B 43, 14297 (1991)CrossRefGoogle Scholar
  19. 19.
    R. Rizk, P. de Mierry, D. Ballutaud, M. Aucouturier, D. Mathiot, Phys. Rev. B 44, 6141 (1991)CrossRefGoogle Scholar
  20. 20.
    N.M. Johnson, M.D. Moyer, Appl. Phys. Lett. 46, 787 (1985)CrossRefGoogle Scholar
  21. 21.
    N.M. Johnson, Phys. Rev. B 31, 5525 (1985)CrossRefGoogle Scholar
  22. 22.
    K.J. Chang, D.J. Chadi, Phys. Rev. B 40, 11644 (1989)CrossRefGoogle Scholar
  23. 23.
    V.V. Voronkov, Adv. Mat. Sci. Eng. 2018, 238543 (2018)Google Scholar
  24. 24.
    B.Y. Tong, X.W. Wu, G.R. Yang, S.K. Wong, Canad. J. Phys. 67, 379 (1989)Google Scholar
  25. 25.
    S.J. Pearton, Mater. Sci. Eng. B 23, 130 (1994)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Global WafersMeranoItaly

Personalised recommendations