Advertisement

Introduction

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The first chapter is an introductory chapter, including introduction to power system loads and stability, review of past work, and aims and objectives of the research.

References

  1. 1.
    Han D, Ma J, He R-M, Dong Z-Y (2009) A real application of measurement-based load modeling in large-scale power grids and its validation. IEEE Trans Power Syst 24:1756–1764Google Scholar
  2. 2.
    Craven R, Michael M (1983) Load characteristic measurements and representation of loads in the dynamic simulation of the Queensland power system. In: 1983 CIGRE and IFAC symposiumGoogle Scholar
  3. 3.
    Renmu H, Jin M, Hill DJ (2006) Composite load modeling via measurement approach. IEEE Trans Power Syst 21:663–672CrossRefGoogle Scholar
  4. 4.
    Price W, Chiang H-D, Clark H, Concordia C, Lee D, Hsu J, Ihara S, King C, Lin C, Mansour Y (1993) Load representation for dynamic performance analysis. IEEE Trans Power Syst 8:472–482CrossRefGoogle Scholar
  5. 5.
    Milanovic JV, Gaikwad A, Borghetti A, Djokic SZ, Dong ZY, Andrew Halley, Korunovic LM, Villanueva SN, Ma J, Pourbeik P, Resende F, Sterpu S, Villella F, Yamashita K, Auer O, Karoui K, Kosterev D, Leung SK, Mtolo D, Zali SM, Collin A, Xu Y (2014) Modelling and aggregation of loads in flexible power networks. J. M. CIGRE WG C4.605Google Scholar
  6. 6.
    Ohno T, Imai S (2006) The 1987 Tokyo blackout. In: 2006 IEEE PES power systems conference and exposition, pp 314–318Google Scholar
  7. 7.
    Kosterev DN, Taylor CW, Mittelstadt WA (1999) Model validation for the August 10, 1996 WSCC system outage. IEEE Trans Power Syst 14:967–979CrossRefGoogle Scholar
  8. 8.
    W. M. a. V. W. Group, WECC MVWG Load Model Report ver. 1.0. In: WECC, 2012Google Scholar
  9. 9.
    D. S. a. W. P. S. Ranade, Advanced load modeling—entergy pilot study. In: EPRI2004Google Scholar
  10. 10.
    Collin AJ (2013) Advanced load modelling for power system studies. Insitute for Energy Systems, University of Edinburgh, Edinburgh, UKGoogle Scholar
  11. 11.
    Preece R (2013) A probabilistic approach to improving the stability of meshed power networks with embedded HVDC lines. Ph.D., School of Electrical and Electronic Engineering, The University of Manchester, Manchester, UKGoogle Scholar
  12. 12.
    Kundur P, Paserba J, Ajjarapu V, Andersson G, Bose A, Canizares C, Hatziargyriou N, Hill D, Stankovic A, Taylor C, Van Cutsem T, Vittal V (2004) Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Trans on Power Syst 19:1387–1401CrossRefGoogle Scholar
  13. 13.
    Hain Y, Schweitzer I (1997) Analysis of the power blackout of June 8, 1995 in the Israel Electric Corporation. IEEE Trans Power Syst 12:1752–1758CrossRefGoogle Scholar
  14. 14.
    Corsi S, Sabelli C (2004) General blackout in Italy Sunday September 28, 2003, h. 03: 28: 00. IEEE Power Eng Soc Gener Meet 2004:1691–1702Google Scholar
  15. 15.
    Vournas C (2004) Technical summary on the Athens and Southern Greece blackout of July 12, 2004. National Technical University of AthensGoogle Scholar
  16. 16.
    Ferc N (2012) Arizona-southern california outages on 8 September 2011: causes and recommendations. FERC and NERCGoogle Scholar
  17. 17.
    Romero JJ (2012) Blackouts illuminate India’s power problems. IEEE Spectr 49Google Scholar
  18. 18.
    Suzuki M, Wada S, Sato M, Asano T, Kudo Y (1992) Newly developed voltage security monitoring system. IEEE Trans on Power Syst 7:965–973CrossRefGoogle Scholar
  19. 19.
    Suganyadevia MV, Babulal CK Estimating of loadability margin of a power system by comparing voltage stability indices. In: 2009 international conference on control, automation, communication and energy conservation. INCACEC, 2009, pp 1–4Google Scholar
  20. 20.
    O’Sullivan J, Rogers A, Flynn D, Smith P, Mullane A, O’Malley M (2014) Studying the maximum instantaneous non-synchronous generation in an island system—frequency stability challenges in Ireland. IEEE Trans Power Syst 29:2943–2951CrossRefGoogle Scholar
  21. 21.
    Zhao C, Topcu U, Li N, Low S (2014) Design and stability of load-side primary frequency control in power systems. IEEE Trans Autom Control 59:1177–1189CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    Ali E, Abd-Elazim S (2011) Bacteria foraging optimization algorithm based load frequency controller for interconnected power system. Int J Electr Power Energy Syst 33:633–638CrossRefGoogle Scholar
  23. 23.
    Jiang L, Yao W, Wu Q, Wen J, Cheng S (2012) Delay-dependent stability for load frequency control with constant and time-varying delays. IEEE Trans Power Syst 27:932CrossRefGoogle Scholar
  24. 24.
    C. T. F. Rep., Analysis and modeling needs of power systems under major frequency disturbances. January 1999Google Scholar
  25. 25.
    Younkins T, deMello F, Dunlop R, Fenton F, Intrabartola J, Kundur P, Littman B, Russell T (1983) Guidelines for enhancing power plant response to partial load rejections. IEEE Trans Power Appar Syst (United States) 102Google Scholar
  26. 26.
    Kundur P (1994) Power system stability and control, 2nd edn, vol 1. McGraw-Hill, New YorkGoogle Scholar
  27. 27.
    Preece R (2013) Improving the stability of meshed power networks: a probabilistic approach using embedded HVDC lines. Springer Science & Business MediaGoogle Scholar
  28. 28.
    Liapunov AM (2016) Stability of motion. ElsevierGoogle Scholar
  29. 29.
    Xu Y (2015) Probabilistic estimation and prediction of the dynamic response of the demand at bulk supply points. Ph.D. School of Electrical and Electronic Engineering, University of Manchester, ManchesterGoogle Scholar
  30. 30.
    Grainger JJ, Stevenson WD, Chang GW (1994) Power system analysis. vol 621. McGraw-Hill New YorkGoogle Scholar
  31. 31.
    Machowski J, Bialek J, Bumby JR, Bumby J (1997) Power system dynamics and stability. WileyGoogle Scholar
  32. 32.
    Chiodo E, Lauria D (1994) Transient stability evaluation of multimachine power systems: a probabilistic approach based upon the extended equal area criterion. IEE Proc-Gener, Transm Distrib 141:545–553CrossRefGoogle Scholar
  33. 33.
    Hiskens I, Milanovic J (1997) Locating dynamic loads which significantly influence damping. IEEE Trans Power Syst 12:255–261CrossRefGoogle Scholar
  34. 34.
    Makarov YV, Maslennikov VA, Hill DJ (1996) Revealing loads having the biggest influence on power system small disturbance stability. IEEE Trans Power Syst 11:2018–2023CrossRefGoogle Scholar
  35. 35.
    Maslennikov VA, Milanovic JV, Ustinov SM (2002) Robust ranking of loads by using sensitivity factors and limited number of points from a hyperspace of uncertain parameters. IEEE Trans Power Syst 17:565–570CrossRefGoogle Scholar
  36. 36.
    Makarov YV, Hill DJ, Milanovic JV (1997) Effect of load uncertainty on small disturbance stability margins in open-access power systems. In: Proceedings of the thirtieth Hawaii international conference on system sciences, 1997, pp 648–657Google Scholar
  37. 37.
    Hasan KN, Preece R, Milanović JV (2017) Priority ranking of critical uncertainties affecting small-disturbance stability using sensitivity analysis techniques. IEEE Trans Power Syst 32:2629–2639CrossRefGoogle Scholar
  38. 38.
    Iooss B, Lemaître P (2015) A review on global sensitivity analysis methods. In: Uncertainty management in simulation-optimization of complex systems, Springer, pp 101–122Google Scholar
  39. 39.
    King D, Perera B (2013) Morris method of sensitivity analysis applied to assess the importance of input variables on urban water supply yield–a case study. J Hydrol 477:17–32CrossRefGoogle Scholar
  40. 40.
    Obadina O, Berg G (1990) Identifying electrically weak and strong segments of a power system from a voltage stability viewpoint. In IEEE proceedings C (generation, transmission and distribution), pp 205–212Google Scholar
  41. 41.
    Chen Y-L, Chang C-W, Liu C-C (1995) Efficient methods for identifying weak nodes in electrical power networks. In: IEEE proceedings-generation, transmission and distribution, vol 142, pp 317–322Google Scholar
  42. 42.
    Demmel JW (1997) Applied numerical linear algebra vol 56. SiamGoogle Scholar
  43. 43.
    Lof PA, Smed T, Andersson G, Hill DJ (1992) Fast calculation of a voltage stability index. IEEE Trans on Power Syst 7:54–64CrossRefGoogle Scholar
  44. 44.
    Song Y, Wan H, Johns A (1997) Kohonen neural network based approach to voltage weak buses/areas identification. In: IEEE proceedings-generation, transmission and distribution, vol 144, pp 340–344Google Scholar
  45. 45.
    Lo K, Peng L, Macqueen J, Ekwue A, Cheng D (1995) Kohonen neural network as an aid tool in power system security operationGoogle Scholar
  46. 46.
    Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neural Netw 8:877–890CrossRefGoogle Scholar
  47. 47.
    Wan H, Ekwue A (2000) Artificial neural network based contingency ranking method for voltage collapse. Int J Electr Power Energy Syst 22:349–354CrossRefGoogle Scholar
  48. 48.
    Musirin I, Rahman TA (2002) Estimating maximum loadability for weak bus identification using FVSI. IEEE Power Eng Rev 22:50–52CrossRefGoogle Scholar
  49. 49.
    Musirin I, Rahman TA On-line voltage stability based contingency ranking using fast voltage stability index (FVSI). In: Transmission and distribution conference and exhibition 2002: Asia Pacific. IEEE/PES 2002, pp 1118–1123Google Scholar
  50. 50.
    Shankar S, Ananthapadmanabha DT (2011) Fuzzy approach to critical bus ranking under normal and line outage contingencies. arXiv preprint arXiv:1103.0127
  51. 51.
    Li Y, Chiang H-D, Li H, Chen Y-T, Huang D-H, Lauby MG Power system load ranking for voltage stability analysis. In: Power engineering society general meeting. IEEE, 2006, p 8Google Scholar
  52. 52.
    Ettehadi M, Ghasemi H, Vaez-Zadeh S (2013) Voltage stability-based DG placement in distribution networks. IEEE Trans Power Deliv 28:171–178CrossRefGoogle Scholar
  53. 53.
    Xue Y, Pavella M (1993) Critical-cluster identification in transient stability studies. In: IEEE proceedings C (generation, transmission and distribution), pp 481–489Google Scholar
  54. 54.
    Yuan W, Chan K, Zhang Y Identification of critical cluster in transient stability study using line potential energy method. In: Power engineering society general meeting, 2006. IEEE, p 6Google Scholar
  55. 55.
    Alhasawi FB, Milanovic JV (2012) Ranking the importance of synchronous generators for renewable energy integration. IEEE Trans Power Syst 27:416–423CrossRefGoogle Scholar
  56. 56.
    Ruiz-Vega D, Ernst D, Ferreira CM, Pavella M, Hirsch P, Sobajic D (2000) A contingency filtering, ranking and assessment technique for on-line transient stability studies. In: International conference on electric utility deregulation and restructuring and power technologies, DRPT 2000, pp 459–464Google Scholar
  57. 57.
    Xue A, Shen C, Mei S, Ni Y, Wu FF, Lu Q A new transient stability index of power systems based on theory of stability region and its applications. In: Power engineering society general meeting, 2006. IEEE, p 6Google Scholar
  58. 58.
    Grillo S, Massucco S, Pitto A, Silvestro F Indices for fast contingency ranking in large electric power systems. In: MELECON 2010–2010 15th IEEE Mediterranean electrotechnical conference, 2010, pp 660–666Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.State Grid Corporation of ChinaShanghaiChina

Personalised recommendations