Advertisement

Development of New Lagrangian Computational Methods for Ice-Ship Interaction Problems: NICESHIP Project

  • Julio García-EspinosaEmail author
  • Eugenio Oñate
  • Borja Serván Camas
  • Miguel Angel Celigueta
  • Salva Latorre
  • Jonathan Colom-Cobb
Chapter
  • 51 Downloads
Part of the Computational Methods in Applied Sciences book series (COMPUTMETHODS, volume 54)

Abstract

This document presents the activities carried out to date (04/2019) in the project ‘Development of new Lagrangian computational methods for ice-ship interaction problems’ (NICE-SHIP). The NICE-SHIP project aims at developing a new generation of computational methods, based on the integration of innovative Lagrangian particle-based and finite element procedures for the analysis of the operation of a vessel in an iced sea, taking into account the different possible conditions of the ice. It is expected that the computational analysis techniques to be developed in NICE-SHIP will allow ice-class vessel designers to accurately evaluate the loads acting on the structure of a ship navigating in iced-seas and, in particular, to determine the ice resistance of the ship in different ice conditions.

Keywords

Navigation in ice Ice-ship interaction Computational model Discrete Element Method Semi-Lagrangian Particle Finite Element Method 

Notes

Acknowledgements

This work has been partially supported by the NICE-SHIP project under the NICOP Award N62909-16-1-2236 issued by the Office of Naval Research Global. This support is gratefully acknowledged.

References

  1. 1.
    ITTC-Recommended Procedures and Guidelines (2002). www.ittc.info
  2. 2.
    Celigueta MA, Latorre S, Arrufat F, Onate E (2017) Accurate modelling of the elastic behavior of a continuum with the discrete element method. Comput Mech 60(6):997–1010MathSciNetCrossRefGoogle Scholar
  3. 3.
    Celledoni E, Kometa BK, Verdier O (2016) High order semi-Lagrangian methods for the incompressible Navier-Stokes equations. J Sci Comput 66(1):91–115MathSciNetCrossRefGoogle Scholar
  4. 4.
    Cho SR, Lee S (2015) A prediction method of ice breaking resistance using a multiple regression analysis. Int J Nav Archit Ocean Eng 7(4):708–719CrossRefGoogle Scholar
  5. 5.
    Cho SR, Jeong SY, Lee S (2013) Development of effective model test in pack ice conditions of square-type ice model basin. Ocean Eng 67:35–44CrossRefGoogle Scholar
  6. 6.
    Cho S-R, Jeong S-Y, Lee S, Kang, K-J (2014) Development of a prediction formula for ship resistance in level ice. In: ASME 2014 33rd international conference on ocean, offshore and Arctic engineering. American Society of Mechanical Engineers, pp V010T07A024–V010T07A024Google Scholar
  7. 7.
    Corlett ECB, Snaith GR (1964) Some aspects of icebreaker design. Trans R Inst Nav Archit 106(4):389–413Google Scholar
  8. 8.
    Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock system. In: Proceedings of the international symposium on rock mechanics, 1971Google Scholar
  9. 9.
    Di S, Xue Y, Wang Q, Bai X (2017) Discrete element simulation of ice loads on narrow conical structures. Ocean Eng 146:282–297CrossRefGoogle Scholar
  10. 10.
    Garcia-Espinosa J, Camas BS, Cobb JC, Onate E, Latorre, S, Celigueta, MA (2018) Advances in the simulation of ship navigation in iceGoogle Scholar
  11. 11.
    Garcia-Espinosa J, Valls A, Onate E (2008) ODDLS: a new unstructured mesh finite element method for the analysis of free surface flow problems. Int J Numer Methods Eng 76(9):1297–1327MathSciNetCrossRefGoogle Scholar
  12. 12.
    Hu J, Zhou L (2015) Experimental and numerical study on ice resistance for icebreaking vessels. Int J Nav Archit Ocean Eng 7(3):626–639CrossRefGoogle Scholar
  13. 13.
    Idelsohn SR, Onate E, Pin FD (2004) The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves. Int J Numer Methods Eng 61(7):964–989MathSciNetCrossRefGoogle Scholar
  14. 14.
    Idelsohn S, Nigro N, Limache A, Onate E (2012) Large time-step explicit integration method for solving problems with dominant convection. Comput Methods Appl Mech Eng 217:168–185MathSciNetCrossRefGoogle Scholar
  15. 15.
    Idelsohn SR, Marti J, Becker P, Onate E (2014) Analysis of multifluid flows with large time steps using the particle finite element method. Int J Numer Methods Fluids 75(9):621–644MathSciNetCrossRefGoogle Scholar
  16. 16.
    Idelsohn S, Oñate E, Nigro N, Becker P, Gimenez J (2015) Lagrangian versus Eulerian integration errors. Comput Methods Appl Mech Eng 293:191–206MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ji S, Di S, Liu S (2015) Analysis of ice load on conical structure with discrete element method. Eng Comput 32(4):1121–1134CrossRefGoogle Scholar
  18. 18.
    Kashteljan VI, Poznjak II, Ryblin, AJ (1968) Ice resistance to motion of a shipGoogle Scholar
  19. 19.
    Kim MC, Lee SK, Lee WJ, Wang JY (2013) Numerical and experimental investigation of the resistance performance of an icebreaking cargo vessel in pack ice conditions. Int J Nav Archit Ocean Eng 5(1):116–131CrossRefGoogle Scholar
  20. 20.
    Lewis JW, Edwards Jr RY (1970) Methods for predicting icebreaking and ice resistance characteristics of icebreakersGoogle Scholar
  21. 21.
    Lu W, Lubbad R, Loset S (2014) Simulating ice-sloping structure interactions with the cohesive element method. J Offshore Mech Arct Eng 136(3):031501Google Scholar
  22. 22.
    Nadukandi P, Servan-Camas B, Becker PA, Garcia-Espinosa J (2017) Seakeeping with the semi-Lagrangian particle finite element method. Comput Part Mech 4(3):321–329CrossRefGoogle Scholar
  23. 23.
    Onate E, Garcia J, Idelsohn SR (2004) Ship hydrodynamics (2004) in encyclopedia of computational mechanics, vol 2, ed by Hughes TJR, de Borst R, Stein EGoogle Scholar
  24. 24.
    Onate E, Zarate F, Miquel J, Santasusana M, Celigueta MA, Arrufat F, Gandikota R, Valiullin K, Ring L (2015) A local constitutive model for the discrete element method. Application to geomaterials and concrete. Comput Part Mech 2(2):139–160CrossRefGoogle Scholar
  25. 25.
    Shipyards’ and Maritime Equipment Association (SeaEurope) (2018) Market forecast report. https://bit.ly/2HsRKVc
  26. 26.
    Su B, Riska-K, Moan T (2010) A numerical method for the prediction of ship performance in level ice. Cold Reg Sci Technol 60(3):177–188CrossRefGoogle Scholar
  27. 27.
    Zhou L, Riska-K. Moan T, Su B (2013) Numerical modeling of ice loads on an icebreaking tanker: comparing simulations with model tests. Old Reg Sci Technol 87:33–46CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Julio García-Espinosa
    • 1
    Email author
  • Eugenio Oñate
    • 2
    • 3
  • Borja Serván Camas
    • 4
  • Miguel Angel Celigueta
    • 2
    • 3
  • Salva Latorre
    • 2
    • 3
  • Jonathan Colom-Cobb
    • 4
  1. 1.CIMNE MARINE. C/ Pla del Palau, 18, FNB (BarcelonaTech)BarcelonaSpain
  2. 2.CIMNE, Barcelona, c/Jordi Girona s/n Campus Nord UPC, Edifici C1BarcelonaSpain
  3. 3.Universitat Politecnica de Catalunya - BarcelonaTechBarcelonaSpain
  4. 4.CIMNE MARINE, c/Escar 6-8, Edificio NT3 FNBBarcelonaSpain

Personalised recommendations