Skip to main content

Quantitative and Ontology-Based Comparison of Explanations for Image Classification

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Data Science (LOD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11943))

Abstract

Deep Learning models have recently achieved incredible performances in the Computer Vision field and are being deployed in an ever-growing range of real-life scenarios. Since they do not intrinsically provide insights of their inner decision processes, the field of eXplainable Artificial Intelligence emerged. Different XAI techniques have already been proposed, but the existing literature lacks methods to quantitatively compare different explanations, and in particular the semantic component is systematically overlooked. In this paper we introduce quantitative and ontology-based techniques and metrics in order to enrich and compare different explanations and XAI algorithms.

A. Perotti—Acknowledges support from Intesa Sanpaolo Innovation Center. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    github.com/keras-team/keras.

  2. 2.

    pytorch.org.

References

  1. Binder, A., Bach, S., Montavon, G., et al.: Layer-wise relevance propagation for deep neural network architecture. In: ICISA 2016 (2016)

    Google Scholar 

  2. Chakraborty, S., Tomsett, R., Raghavendra, R., et al.: Interpretability of deep learning models: a survey of results (2017). https://doi.org/10.1109/UIC-ATC.2017.8397411

  3. Chollet, F.: Deep Learning with Python. Manning Publishers & Co (2018)

    Google Scholar 

  4. Deng, J., Dong, W., Socher, R., et al.: ImageNet: a large-scale hierarchical image database (2009). https://doi.org/10.1109/CVPR.2009.5206848

  5. Erhan, D., Bengio, Y., Courville, A., Vincent, P.: Visualizing Higher-Layer Features of a Deep Network (2009). arXiv:1903.02313

  6. Esteva, A., Robicquet, A., Ramsundar, B., et al.: A guide to deep learning in healthcare (2019). https://doi.org/10.1038/s41591-018-0316-z

  7. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. O’Reilly Media (2018)

    Google Scholar 

  8. Goodman, B., Flaxman, S.: European Union regulations on algorithmic decision-making and a “right to explanation” (2017). https://doi.org/10.1609/aimag.v38i3.2741

  9. Guidotti, R., Monreale, A., Ruggieri, S., et al.: A Survey of Methods for Explaining Black Box Models (2018). arXiv:1802.01933v3

  10. Haykin, S.: Neural Networks and Learning Machines. Pearson Prentice Hall (2009). ISBN: 978-0-13-147139-9

    Google Scholar 

  11. Li, H., Cai, J., Nguyen, T., Zheng, J.: A benchmark for semantic image segmentation. In: ICME (2013)

    Google Scholar 

  12. Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995)

    Article  Google Scholar 

  13. Petsiuk, V., Das, A., Saenko, K.: RISE: Randomized Input Sampling for Explanation of Black-Box Models (2018). arXiv:1806.07421v3

  14. Rao, Q., Frtunikj, J.: Deep Learning for Self-driving Cars: Chances and Challenges (2018). https://doi.org/10.1145/3194085.3194087

  15. Ribeiro, M.T., Singh, S., Guestrin, C.: Why Should I Trust You? Explaining the Predictions of Any Classifier (2016). arXiv:1602.04938v3

  16. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall Press (1994). ISBN 0136042597 9780136042594

    Google Scholar 

  17. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R.: Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization (2017). arXiv:1610.02391v3

  18. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for Simplicity: The All Convolutional Net (2015). arXiv:1412.6806v3

  19. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J.: Rethinking the Inception Architecture for Computer Vision (2015). arXiv:1512.00567v3

  20. Wu, Z., Palmer, M.: Verbs Semantics and Lexical Selection (2004). https://doi.org/10.3115/981732.981751

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Ghidini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghidini, V., Perotti, A., Schifanella, R. (2019). Quantitative and Ontology-Based Comparison of Explanations for Image Classification. In: Nicosia, G., Pardalos, P., Umeton, R., Giuffrida, G., Sciacca, V. (eds) Machine Learning, Optimization, and Data Science. LOD 2019. Lecture Notes in Computer Science(), vol 11943. Springer, Cham. https://doi.org/10.1007/978-3-030-37599-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-37599-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-37598-0

  • Online ISBN: 978-3-030-37599-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics