Advertisement

Piezoelectric Multi-Frequency Nonlinear MEMS Converter for Energy Harvesting from Broadband Vibrations

  • M. BaùEmail author
  • M. Ferrari
  • V. Ferrari
Conference paper
  • 62 Downloads
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 629)

Abstract

This paper proposes a MEMS piezoelectric converter for energy harvesting from vibrations which exploits nonlinear effects to broaden the operating bandwidth. The converter is composed of an array of cantilevers with different geometric dimensions. Piezoelectric layer and electrodes have been deposited on the cantilevers by a custom low-curing temperature post process. Nonlinearity is achieved by the magnetic interaction of a magnet and ferromagnetic particles deposited on the cantilever tips. Preliminary results show that the converter behaves like a nonlinear system and a downshift of the resonant frequency of the cantilevers with respect to the linear resonant frequency is observed, as expected.

Keywords

MEMS Piezoelectric converter Nonlinear energy harvesting Low-curing piezoelectric ink 

References

  1. 1.
    Čolaković A, Hadžialić M (2018) Internet of things (IoT): a review of enabling technologies, challenges, and open research issues. Comput Netw 144:17–39CrossRefGoogle Scholar
  2. 2.
    Baù M, Ferrari M, Ferrari V (2019) Magnet-less electromagnetic contactless interrogation technique for unwired conductive resonators. Elec Lett 55(11):642–644CrossRefGoogle Scholar
  3. 3.
    Demori M, Baù M, Ferrari M, Ferrari V (2018) Electronic technique and circuit topology for accurate distance-independent contactless readout of passive LC sensors. AEU Int J Electron Commun 92:82–85CrossRefGoogle Scholar
  4. 4.
    Baù M, Ferrari M, Ferrari V (2017) Analysis and validation of contactless time-gated interrogation technique for quartz resonator sensors. Sensors 17(6):1264CrossRefGoogle Scholar
  5. 5.
    Demori M, Baù M, Dalola S, Ferrari M, Ferrari V (2019) Low-requency RFID signal and power transfer circuitry for capacitive and resistive mixed sensor array. Electronics 8(6): 675CrossRefGoogle Scholar
  6. 6.
    Demori M, Baù M, Ferrari M, Ferrari V (2018) Interrogation techniques and interface circuits for coil-coupled passive sensors. Micromachines 9(9):449CrossRefGoogle Scholar
  7. 7.
    Ferrari M, Baù M, Tonoli E, Ferrari V (2013) Piezoelectric resonant sensors with contactless interrogation for mass-sensitive and acoustic-load detection. Sens Actuators Phys 202:100–105CrossRefGoogle Scholar
  8. 8.
    Yildirim T, Ghayesh MH, Li W, Alici G (2017) A review on performance enhancement techniques for ambient vibration energy harvesters. Renew Sustain Energy Rev 71:435–449CrossRefGoogle Scholar
  9. 9.
    Wei C, Jing X (2017) A comprehensive review on vibration energy harvesting: modelling and realization. Renew Sustain Energy Rev 74:1–18MathSciNetCrossRefGoogle Scholar
  10. 10.
    Tang L, Yang Y, Soh CK (2010) Toward broadband vibration-based energy harvesting. J Intell Mater Syst Struct 21(18):1867–1897CrossRefGoogle Scholar
  11. 11.
    Zhu D, Tudor MJ, Beeby S (2010) Strategies for increasing the operating frequency range of vibration energy harvesters: a review. Meas Sci Technol 21:1–29Google Scholar
  12. 12.
    Ferrari M, Baù M, Cerini F, Ferrari V (2012) Impact-enhanced multi-beam piezoelectric converter for energy harvesting in autonomous sensors. Procedia Eng 47:418–421CrossRefGoogle Scholar
  13. 13.
    Alghisi D, Dalola S, Ferrari M, Ferrari V (2015) Triaxial ball-impact piezoelectric converter for autonomous sensors exploiting energy harvesting from vibrations and human motion. Sens Actuators Phys 233:569–581CrossRefGoogle Scholar
  14. 14.
    Andò B, Baglio S, Baù M, Bulsara AR, Ferrari V, Ferrari M, L’Episcopo G (2012) A nonlinear energy harvester by direct printing technology. Procedia Eng 47:933–936CrossRefGoogle Scholar
  15. 15.
    Demori M, Ferrari M, Bonzanini A, Poesio P, Ferrari V (2017) Autonomous sensors powered by energy harvesting by von Karman vortices in airflow. Sensors 17(9):2100CrossRefGoogle Scholar
  16. 16.
    Ferrari M, Alghisi D, Baù M, Ferrari V (2012) Nonlinear multi-frequency converter array for vibration energy harvesting in autonomous sensors. Procedia Eng 47:410–413CrossRefGoogle Scholar
  17. 17.
    Gu L (2011) Low-frequency piezoelectric energy harvesting prototype suitable for the MEMS implementation. Microelectron J 42:277–282CrossRefGoogle Scholar
  18. 18.
    Kaajakari T, Mattila A, Oja A, Seppä H (2004) Nonlinear limits for single-crystal silicon microresonators. J Microelectromech Syst 13(5):715–724CrossRefGoogle Scholar
  19. 19.
    Baù M, Ferrari M, Tonoli E, Ferrari V (2011) Sensors and energy harvesters based on piezoelectric thick films. Procedia Eng 25:737–744CrossRefGoogle Scholar
  20. 20.
    Ferrari M, Ferrari V, Guizzetti M, Marioli D (2010) Piezoelectric low-curing-temperature ink for sensors and power harvesting. Lect Notes Electr Eng 54:77–81CrossRefGoogle Scholar
  21. 21.
    Andò B, Baglio S, Bulsara AR, Marletta V, Ferrari V, Ferrari M (2015) A low-cost snap-through-buckling inkjet-printed device for vibrational energy harvesting. IEEE Sens J 15(6):3209–3220ADSCrossRefGoogle Scholar
  22. 22.
    Alghisi D, Ferrari V, Ferrari M, Crescini D, Touati F, Mnaouer AB (2017) Single-and multi-source battery-less power management circuits for piezoelectric energy harvesting systems. Sens Actuators Phys 264:234–246CrossRefGoogle Scholar
  23. 23.
    Alghisi D, Ferrari V, Ferrari M, Touati F, Crescini D, Mnaouer AB (2017) A new nano-power trigger circuit for battery-less power management electronics in energy harvesting systems. Sens Actuators Phys 263:305–316CrossRefGoogle Scholar
  24. 24.
    Ferrari M, Ferrari V, Guizzetti M, Marioli D (2010) Investigation on electrical output combination options in a piezoelectric multifrequency converter array for energy harvesting in autonomous sensors. In: Proceedings 1st international conference on sensor device technologies and applications, pp 258–263Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Information EngineeringUniversity of BresciaBresciaItaly
  2. 2.INO-CNR (National Research Council)BresciaItaly

Personalised recommendations