Dynamic Biochemical and Cellular Models of Bone Physiology: Integrating Remodeling Processes, Tumor Growth, and Therapy

  • Rui M. Coelho
  • Joana P. Neto
  • Duarte Valério
  • Susana VingaEmail author
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 35)


Bone is an active   connective tissue composed of different types of cells. The dynamic behavior of bone remodeling processes is typically represented through differential equations, which represent the physiological phenomena occurring in this organ. These models take into account the tight biochemical regulation between osteoclasts and osteoblasts and have also been enriched with variables and parameters related to bone pathologies and treatment. This chapter reviews some of the more recent models describing bone physiology, focusing on those that include the main cellular processes, along the biochemical control, and also the pharmacokinetic/pharmacodynamic (PK/PD) of the most common treatments for diseases such as cancer. These models are then compared in terms of the simulations obtained and, finally, some highlights on integrating them with the biomechanical component of the system which will be given. These models are expected to provide a valuable insight into this complex system and to support the development of clinical decision systems for bone pathologies.



This work was supported by FCT, through IDMEC, under LAETA, projects UID/EMS/50022/2019 and BoneSys (Bone biochemical and biomechanic integrated modeling: addressing remodeling, disease and therapy dynamics), joint Polish–Portuguese project “Modeling and controlling cancer evolution using fractional calculus”, and PERSEIDS (PTDC/EMS-SIS/0642/2014). R. Moura Coelho acknowledges the support by grant ZEUGMA-BiNOVA, number AD0075. S. Vinga acknowledges the support by Program Investigador FCT (IF/00653/2012) from FCT, co-funded by the European Social Fund (ESF) through the Operational Program Human Potential (POPH).


  1. 1.
    Araujo A, Cook LM, Lynch CC, Basanta D (2014) An integrated computational model of the bone microenvironment in bone-metastatic prostate cancer. Cancer Res 74(9):2391–401PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ayati BP, Edwards CM, Webb GF, Wikswo JP (2010) A mathematical model of bone remodeling dynamics for normal bone cell populations and myeloma bone disease. Biol Direct 5:28PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bellido T, Plotkin LI, Bruzzaniti A (2014) Bone Cells (Chap. 2). In: Basic and applied bone biology. Academic Press, Cambridge, pp 27 – 45CrossRefGoogle Scholar
  4. 4.
    Buenzli PR, Pivonka P, Smith DW (2011) Spatio-temporal structure of cell distribution in cortical bone multicellular units: a mathematical model. Bone 48(4):918–26PubMedCrossRefGoogle Scholar
  5. 5.
    Casimiro S, Ferreira AR, Mansinho A, Alho I, Costa L (2016) Molecular mechanisms of bone metastasis: which targets came from the bench to the bedside? Int J Mol Sci 17(9):1415PubMedCentralCrossRefPubMedGoogle Scholar
  6. 6.
    Casimiro S, Guise TA, Chirgwin J (2009) The critical role of the bone microenvironment in cancer metastases. Mol Cell Endocrinol 310(1–2):71–81PubMedCrossRefGoogle Scholar
  7. 7.
    Chen Y-C, Sosnoski DM, Mastro AM (2010) Breast cancer metastasis to the bone: mechanisms of bone loss. Breast Cancer Res: BCR 12(6):215PubMedCrossRefGoogle Scholar
  8. 8.
    Christ LF, Valério D, Coelho R, Vinga S (2018) Models of bone metastases and therapy using fractional derivatives. J Appl Nonlinear Dyn 7(1):81–94CrossRefGoogle Scholar
  9. 9.
    Coelho RM, Lemos JM, Valério D, Alho I, Ferreira AR, Costa L, Vinga S (2016) Dynamic modeling of bone metastasis, microenvironment and therapy–integrating parathyroid hormone (PTH) effect, antiresorptive treatment and chemotherapy. J Theor Biol 391:1–12PubMedCrossRefGoogle Scholar
  10. 10.
    Crockett JC, Rogers MJ, Coxon FP, Hocking LJ, Helfrich MH (2011) Bone remodelling at a glance. J Cell Sci 124(Pt 7):991–8PubMedCrossRefGoogle Scholar
  11. 11.
    Cummings SR, San Martin J, McClung MR, Siris ES, Eastell R, Reid IR, Delmas P, Zoog HB, Austin M, Wang A, Kutilek S, Adami S, Zanchetta J, Libanati C, Siddhanti S, Christiansen C, Trial FREEDOM (2009) Denosumab for prevention of fractures in postmenopausal women with osteoporosis. New England J Med 361(8):756–765Google Scholar
  12. 12.
    Dhillon S, Kostrzewski A (2006) Basic pharmacokinetics (Chap. 1). In: Clinical pharmacokinetics, 1 edn. Pharmaceutical Press (2006)Google Scholar
  13. 13.
    Graham JM, Ayati BP, Holstein SA, Martin JA (2013) The role of osteocytes in targeted bone remodeling: a mathematical model. PloS one 8(5):10–14PubMedCentralCrossRefPubMedGoogle Scholar
  14. 14.
    Guise TA, Mundy GR (1998) Cancer and bone. Endocr Rev 19(1):18–54PubMedGoogle Scholar
  15. 15.
    Hood L, Friend SH (2011) Predictive, personalized, preventive, participatory (P4) cancer medicine. Nat Rev Clin Oncol 8(3):184–187PubMedCrossRefGoogle Scholar
  16. 16.
    Komarova SV (2005) Mathematical model of paracrine interactions between osteoclasts and osteoblasts predicts anabolic action of parathyroid hormone on bone. Endocrinology 146(8):3589–95CrossRefGoogle Scholar
  17. 17.
    Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33(2):206–215CrossRefGoogle Scholar
  18. 18.
    Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229(3):293–309CrossRefGoogle Scholar
  19. 19.
    Liò P, Paoletti N, Moni MA, Atwell K, Merelli E, Viceconti M (2012) Modelling osteomyelitis. BMC Bioinf 13(Suppl 14):S12CrossRefGoogle Scholar
  20. 20.
    Lorenzo CF, Hartley TT (2002) Variable order and distributed order fractional operators. Technical Report National Aeronautics and Space Administration (NASA)Google Scholar
  21. 21.
    Magin RL (2004) Fractional Calculus in Bioengineering. Begell HouseGoogle Scholar
  22. 22.
    Makatsoris T, Kalofonos HP (2009) The role of chemotherapy in the treatment of bone metastases. In: Kardamakis D, Vassiliou V, Chow E (eds) Bone metastases, volume 12 of Cancer metastasis biology and treatment. Springer Netherlands, Dordrecht, pp 287–297CrossRefGoogle Scholar
  23. 23.
    Miller KS, Ross B (1993) An introduction to the fractional calculus and fractional differential equations. Wiley, New YorkGoogle Scholar
  24. 24.
    Petrás I (2009) Stability of fractional-order systems with rational orders: a survey. Int J Theory Appl 12(3)Google Scholar
  25. 25.
    Pivonka P, Buenzli PR, Scheiner S, Hellmich C, Dunstan CR (2013) The influence of bone surface availability in bone remodelling-a mathematical model including coupled geometrical and biomechanical regulations of bone cells. Eng Struct 47:134–147CrossRefGoogle Scholar
  26. 26.
    Pivonka P, Komarova SV (2010) Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics. Bone 47(2):181–189PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43(2):249–63PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, Martin TJ, Mundy GR (2010) Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. J Theor Biol 262(2):306–16PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Podlubny I (2000) Matrix approach to discrete fractional calculus. Fractional Calc Appl Anal 3(4):359–386Google Scholar
  30. 30.
  31. 31.
    Podlubny I, Chechkin A, Skovranek T, Chen YQ, Jara BMV (2009) Matrix approach to discrete fractional calculus II: partial fractional differential equations. J Comput Phys 228:3137–3153CrossRefGoogle Scholar
  32. 32.
    Podlubny I, Skovranek T, Jara BMV, Petras I, Verbitsky V, Chen YQ (1990) Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos Trans R Soc A 371:2013Google Scholar
  33. 33.
    Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285(33):25103–8PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Rahimy M (2010) Applications of fractional differential equations. Appl Math Sci 4(50):2453–2461Google Scholar
  35. 35.
    Roodman GD (2004) Mechanisms of bone metastasis. New England J Med 360(16):1655–1664CrossRefGoogle Scholar
  36. 36.
    Ryser MD, Komarova SV, Nigam N (2010) The cellular dynamics of bone remodeling: a mathematical model. SIAM J Appl Math 70(6):1899–1921CrossRefGoogle Scholar
  37. 37.
    Ryser MD, Nigam N, Komarova SV (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Mineral Res 24(5):860–70CrossRefGoogle Scholar
  38. 38.
    Ryser MD, Qu Y, Komarova SV (2012) Osteoprotegerin in bone metastases: mathematical solution to the puzzle. PLoS Comput Biol 8(10):e1002703PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Samko SG, Kilbas AA, Marichev OI (1993) Fractional integrals and derivatives. Gordon and Breach, YverdonGoogle Scholar
  40. 40.
    Savageau MA (1988) Introduction to S-systems and the underlying power-law formalism. Math Comput Modell 11:546–551CrossRefGoogle Scholar
  41. 41.
    Scheiner S, Pivonka P, Smith DW, Dunstan CR, Hellmich C (2014) Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab. Int J Numer Methods Biomed Eng 30(1):1–27CrossRefGoogle Scholar
  42. 42.
    Scheiner S, Pivonka P, Hellmich C (2013) Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comput Methods Appl Mech Eng 254:181–196CrossRefGoogle Scholar
  43. 43.
    Sierociuk D, Malesza W, Macias M (2016) Numerical schemes for initialized constant and variable fractional-order derivatives: matrix approach and its analog verification. J Vib Control 22(8):2032–2044CrossRefGoogle Scholar
  44. 44.
    Suva LJ, Washam C, Nicholas RW, Griffin RJ (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7(4):208–18PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Valério D, Coelho R, Vinga S (2016) Fractional dynamic modelling of bone metastasis, microenvironment and therapy. In: International conference on fractional differentiation and its applicationsGoogle Scholar
  46. 46.
    Valério D, da Costa JS (2011) Introduction to single-input, single-output Fractional Control. IET Control Theor Appl 5(8):1033–1057CrossRefGoogle Scholar
  47. 47.
    Valério D, da Costa JS (2011) Variable-order fractional derivatives and their numerical approximations. Sign Process 91(3):470–483CrossRefGoogle Scholar
  48. 48.
    Valério D, da Costa JS (2013) An introduction to fractional control. IET, Stevenage. ISBN 978-1-84919-545-4Google Scholar
  49. 49.
    Wang Y, Pivonka P, Buenzli PR, Smith DW, Dunstan CR (2011) Computational modeling of interactions between multiple myeloma and the bone microenvironment. PloS one 6(11):e27494PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Zumsande M, Stiefs D, Siegmund S, Gross T (2011) General analysis of mathematical models for bone remodeling. Bone 48(4):910–7PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rui M. Coelho
    • 1
  • Joana P. Neto
    • 2
  • Duarte Valério
    • 1
  • Susana Vinga
    • 3
    Email author
  1. 1.IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  3. 3.INESC-ID, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal

Personalised recommendations