Advertisement

Meshless, Bone Remodelling and Bone Regeneration Modelling

  • M. C. Marques
  • Jorge BelinhaEmail author
  • R. Natal Jorge
  • A. F. Oliveira
Chapter
  • 8 Downloads
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 35)

Abstract

In this chapter, it is presented an extensive bibliographic survey about meshless methods, bone remodelling and bone regeneration modelling. Here, the regeneration and remodelling processes are shown with detail and, in addition, it is presented a description of the mathematical models approaching both regeneration and remodelling processes. Three different classifications of models are presented, the mechanoregulated models, the bioregulated models and the mechanobioregulated models. The literature shows that the combination of remodelling models with meshless techniques allows to numerically achieve more realistic trabecular distributions. Thus, in this chapter, an introduction to meshless methods is presented, with a special focus on radial point interpolation meshless methods, such as the radial point interpolation method (RPIM) and the natural neighbour RPIM (NNRPIM).

Notes

Acknowledgements

The authors truly acknowledge the funding provided by Ministério da Educação e Ciência—Fundação para a Ciência e a Tecnologia (Portugal), under grants SFRH/BD/110047/2015, and by project funding MIT-EXPL/ISF/0084/2017. Additionally, the authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022—SciTech—Science and Technology for Competitive and Sustainable Industries, co-financed by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

References

  1. 1.
    Belinha J (2014) Meshless methods in biomechanics: lecture notes in computational vision and biomechanics, vol 16. Springer International Publishing, Switzerland. ISBN: 9783319063997CrossRefGoogle Scholar
  2. 2.
    Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol Mech Dis 6:121–145.  https://doi.org/10.1146/annurev-pathol-011110-130203CrossRefGoogle Scholar
  3. 3.
    Qin Q-H (2012) Mechanics of cellular bone remodeling: coupled thermal, electrical, and mechanical field effects, 1st edn. CRC Press, Boca Raton. ISBN: 9781466564176Google Scholar
  4. 4.
    Van Putte CL, Regan J, Russo A, Seeley RR, Stephens T, Tate P, Regan J, Russo A, Seeley RR, Stephens T, Tate P (2014) Seeley’s anatomy & physiology, 10th edn. McGraw-Hill, New York. ISBN: 9780073403632Google Scholar
  5. 5.
    Wnek GE, Bowlin GL (2008) Encyclopedia of biomaterials and biomedical engineering, 2nd edn. CRC Press, Boca Raton. ISBN: 9781420078022Google Scholar
  6. 6.
    Reddy JN (2004) An introduction to nonlinear finite element analysis, 1st edn. Oxford University Press, Oxford. ISBN: 9780198525295Google Scholar
  7. 7.
    Dimitriou R, Jones E, McGonagle D, Giannoudis PV (2011) Bone regeneration: current concepts and future directions. BMC Med 9:66.  https://doi.org/10.1186/1741-7015-9-66CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Epari DR, Duda GN, Thompson MS (2010) Mechanobiology of bone healing and regeneration: In vivo models. Proc Inst Mech Eng Part H J Eng Med 224:1543–1553.  https://doi.org/10.1243/09544119JEIM808CrossRefGoogle Scholar
  9. 9.
    Geris L, Vander Sloten J, Van Oosterwyck H (2009) In silico biology of bone modelling and remodelling: regeneration. Philos Trans R Soc A Math Phys Eng Sci 367:2031–2053.  https://doi.org/10.1098/rsta.2008.0293CrossRefGoogle Scholar
  10. 10.
    Shapiro F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cells Mater 15:53–76.  https://doi.org/10.22203/eCM.v015a05 [pii]CrossRefGoogle Scholar
  11. 11.
    Lieberman JR, Friedlaender GE (2005) Bone regeneration and repair: in biology and clinical applications, 1st edn. Humana Press, Totowa. ISBN: 9780896038479Google Scholar
  12. 12.
    Abrahamsson I, Berglundh T, Linder E, Lang NP, Lindhe J (2004) Early bone formation adjacent to rough and turned endosseous implant surfaces. An experimental study in the dog. Clin Oral Implants Res 15:381–392.  https://doi.org/10.1111/j.1600-0501.2004.01082.xCrossRefPubMedGoogle Scholar
  13. 13.
    Berglundh T, Abrahamsson I, Lang NP, Lindhe J (2003) De novo alveolar bone formation adjacent to endosseous implants. A model study in the dog. Clin Oral Implants Res 14:251–262.  https://doi.org/10.1034/j.1600-0501.2003.00972.xCrossRefPubMedGoogle Scholar
  14. 14.
    Davies J (2003) Understanding peri-implant endosseous healing. J Dent Educ 67:932–949PubMedGoogle Scholar
  15. 15.
    Bailón-Plaza A, Van Der Meulen MCH (2001) A mathematical framework to study the effects of growth factor influences on fracture healing. J Theor Biol 212:191–209.  https://doi.org/10.1006/jtbi.2001.2372CrossRefPubMedGoogle Scholar
  16. 16.
    Rodan GA, Martin TJ (1981) Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 33:349–351.  https://doi.org/10.1007/BF02409454CrossRefPubMedGoogle Scholar
  17. 17.
    Hauge EM, Qvesel D, Eriksen EF, Mosekilde L, Melsen F (2001) Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res 16:1575–1582.  https://doi.org/10.1359/jbmr.2001.16.9.1575CrossRefPubMedGoogle Scholar
  18. 18.
    Kular J, Tickner J, Chim SM, Xu J (2012) An overview of the regulation of bone remodelling at the cellular level. Clin Biochem 45:863–873.  https://doi.org/10.1016/j.clinbiochem.2012.03.021CrossRefPubMedGoogle Scholar
  19. 19.
    Smit TH, Burger EH (2010) Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. J Bone Miner Res 15:301–307.  https://doi.org/10.1359/jbmr.2000.15.2.301CrossRefGoogle Scholar
  20. 20.
    Raggatt LJ, Partridge NC (2010) Cellular and molecular mechanisms of bone remodeling. J Biol Chem 285:25103–25108.  https://doi.org/10.1074/jbc.R109.041087CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Burr DB, Robling AG, Turner CH (2002) Effects of biomechanical stress on bones in animals. Bone 30:781–786.  https://doi.org/10.1016/S8756-3282(02)00707-XCrossRefPubMedGoogle Scholar
  22. 22.
    Parfitt AM (2002) Targeted and nontargeted bone remodeling: Relationship to basic multicellular unit origination and progression. Bone 30:5–7.  https://doi.org/10.1016/S8756-3282(01)00642-1CrossRefPubMedGoogle Scholar
  23. 23.
    Kroll M (2000) Parathyroid hormone temporal effects on bone formation and resorption. Bull Math Biol 62:163–188.  https://doi.org/10.1006/bulm.1999.0146CrossRefPubMedGoogle Scholar
  24. 24.
    Dobnig H, Turner RT (1997) The effects of programmed administration of human parathyroid hormone fragment (1–34) on bone histomorphometry and serum chemistry in rats. Endocrinology 138:4607–4612.  https://doi.org/10.1210/endo.138.11.5505CrossRefPubMedGoogle Scholar
  25. 25.
    Karaplis AC, Goltzman D (2000) PTH and PTHrP effects on the skeleton. Rev Endocr Metab Disord 1:331–341.  https://doi.org/10.1023/A:1026526703898CrossRefPubMedGoogle Scholar
  26. 26.
    Locklin RM, Khosla S, Turner RT, Riggs BL (2003) Mediators of the biphasic responses of bone to intermittent and continuously administered parathyroid hormone. J Cell Biochem 89:180–190.  https://doi.org/10.1002/jcb.10490CrossRefPubMedGoogle Scholar
  27. 27.
    Rubin MR, Bilezikian JP (2003) New anabolic therapies in osteoporosis. Endocrinol Metab Clin North Am 32:285–307.  https://doi.org/10.1016/S0889-8529(02)00056-7CrossRefPubMedGoogle Scholar
  28. 28.
    Valds-Flores M, Orozco L, Velzquez-Cruz R (2013) Molecular aspects of bone remodeling. In: Valds-Flores M (ed) Topics in osteoporosis. InTech, pp 1–28Google Scholar
  29. 29.
    Bauman WA, Spungen AM, Wang J, Pierson RN, Schwartz E (1999) Continuous loss of bone during chronic immobilization: a monozygotic twin study. Osteoporos Int 10:123–127.  https://doi.org/10.1007/s001980050206CrossRefPubMedGoogle Scholar
  30. 30.
    Zerwekh JE, Ruml LA, Gottschalk F, Pak CYC (2009) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 13:1594–1601.  https://doi.org/10.1359/jbmr.1998.13.10.1594CrossRefGoogle Scholar
  31. 31.
    Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238.  https://doi.org/10.1002/jbmr.320CrossRefPubMedGoogle Scholar
  32. 32.
    Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z, Zhao L, Nagy TR, Peng X, Hu J, Feng X, Van Hul W, Wan M, Cao X (2009) TGF-β1–induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15:757–765.  https://doi.org/10.1038/nm.1979CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Teti A (2011) Bone development: overview of bone cells and signaling. Curr Osteoporos Rep 9:264–273.  https://doi.org/10.1007/s11914-011-0078-8CrossRefPubMedGoogle Scholar
  34. 34.
    Everts V, Delaissié JM, Korper W, Jansen DC, Tigchelaar-Gutter W, Saftig P, Beertsen W (2002) The bone lining cell: its role in cleaning Howship’s lacunae and initiating bone formation. J Bone Miner Res 17:77–90.  https://doi.org/10.1359/jbmr.2002.17.1.77CrossRefPubMedGoogle Scholar
  35. 35.
    Gallagher JC, Sai AJ (2010) Molecular biology of bone remodeling: implications for new therapeutic targets for osteoporosis. Maturitas 65:301–307.  https://doi.org/10.1016/j.maturitas.2010.01.002CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Matsuo K, Irie N (2008) Osteoclast-osteoblast communication. Arch Biochem Biophys 473:201–209.  https://doi.org/10.1016/j.abb.2008.03.027CrossRefPubMedGoogle Scholar
  37. 37.
    Kini U, Nandeesh BN (2012) Physiology of bone formation, remodeling, and metabolism. Radionuclide and hybrid bone imaging. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 29–57CrossRefGoogle Scholar
  38. 38.
    Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389.  https://doi.org/10.1093/mnras/181.3.375CrossRefGoogle Scholar
  39. 39.
    Liu GR, Gu YT (2001) Local point interpolation method for stress analysis of two-dimensional solids. Struct Eng Mech 11:221–236.  https://doi.org/10.12989/sem.2001.11.2.221CrossRefGoogle Scholar
  40. 40.
    Liu GR, Gu YT (2001) A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids. J Sound Vib 246:29–46.  https://doi.org/10.1006/jsvi.2000.3626CrossRefGoogle Scholar
  41. 41.
    Liu GR, Gu YT (2001) A point interpolation method for two-dimensional solids. Int J Numer Methods Eng 50:937–951.  https://doi.org/10.1002/1097-0207(20010210)50:4%3c937:AID-NME62%3e3.0.CO;2-XCrossRefGoogle Scholar
  42. 42.
    Dinis LMJS, Jorge RM Natal, Belinha J (2007) Analysis of 3D solids using the natural neighbour radial point interpolation method. Comput Methods Appl Mech Eng 196:2009–2028.  https://doi.org/10.1016/j.cma.2006.11.002CrossRefGoogle Scholar
  43. 43.
    Liszka T, Orkisz J (1980) The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput Struct 11:83–95.  https://doi.org/10.1016/0045-7949(80)90149-2CrossRefGoogle Scholar
  44. 44.
    Nayroles B, Touzot G, Villon P (1992) Generalizing the finite element method: diffuse approximation and diffuse elements. Comput Mech 10:307–318.  https://doi.org/10.1007/BF00364252CrossRefGoogle Scholar
  45. 45.
    Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37:229–256.  https://doi.org/10.1002/nme.1620370205CrossRefGoogle Scholar
  46. 46.
    Atluri SN, Zhu T (1998) A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics. Comput Mech 22:117–127.  https://doi.org/10.1007/s004660050346CrossRefGoogle Scholar
  47. 47.
    Wang JG, Liu GR (2002) A point interpolation meshless method based on radial basis functions. Int J Numer Methods Eng 54:1623–1648.  https://doi.org/10.1002/nme.489CrossRefGoogle Scholar
  48. 48.
    Wang JG, Liu GR (2002) On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Comput Methods Appl Mech Eng 191:2611–2630.  https://doi.org/10.1016/S0045-7825(01)00419-4CrossRefGoogle Scholar
  49. 49.
    Belinha J, Dinis LMJS, Jorge RM Natal (2013) The natural radial element method. Int J Numer Methods Eng 93:1286–1313.  https://doi.org/10.1002/nme.4427CrossRefGoogle Scholar
  50. 50.
    Dinis LMJS, Jorge RMN, Belinha J (2011) Static and dynamic analysis of laminated plates based on an unconstrained third order theory and using a radial point interpolator meshless method. Comput Struct 89:1771–1784.  https://doi.org/10.1016/j.compstruc.2010.10.015CrossRefGoogle Scholar
  51. 51.
    Dinis LMJS, Jorge RM Natal, Belinha J (2008) Analysis of plates and laminates using the natural neighbour radial point interpolation method. Eng Anal Bound Elem 32:267–279.  https://doi.org/10.1016/j.enganabound.2007.08.006CrossRefGoogle Scholar
  52. 52.
    Duarte HMS, Andrade JR, Dinis LMJS, Jorge RMN, Belinha J (2016) Numerical analysis of dental implants using a new advanced discretization technique. Mech Adv Mater Struct 23:467–479.  https://doi.org/10.1080/15376494.2014.987410CrossRefGoogle Scholar
  53. 53.
    Doblaré M, Cueto E, Calvo B, Martínez MA, Garcia JM, Cegoñino J (2005) On the employ of meshless methods in biomechanics. Comput Methods Appl Mech Eng 194:801–821.  https://doi.org/10.1016/j.cma.2004.06.031CrossRefGoogle Scholar
  54. 54.
    Farahani BV, Berardo JMV, Drgas R, de Sá JC, Ferreira A, Belinha J (2015) The axisymmetric analysis of circular plates using the radial point interpolation method. J Comput Methods Eng Sci Mech 16:336–353.  https://doi.org/10.1080/15502287.2015.1103819CrossRefGoogle Scholar
  55. 55.
    Pauwels F (1960) Eine neue Theorie über den Einfluß mechanischer Reize auf die Differenzierung der Stützgewebe. Brain Struct Funct 121:478–515.  https://doi.org/10.1007/BF00523401CrossRefGoogle Scholar
  56. 56.
    Adam JA (1999) A simplified model of wound healing (with particular reference to the critical size defect). Math Comput Model 30:23–32.  https://doi.org/10.1016/S0895-7177(99)00145-4CrossRefGoogle Scholar
  57. 57.
    Arnold JS, Adam JA (1999) A simplified model of wound healing II: the critical size defect in two dimensions. Math Comput Model 30:47–60.  https://doi.org/10.1016/S0895-7177(99)00197-1CrossRefGoogle Scholar
  58. 58.
    Pauwels F (1965) Gesammelte Abhandlungen zur funktionellen Anatomie des Bewegungsapparates. Springer. ISBN: 978-3-642-86842-9Google Scholar
  59. 59.
    Frost HM (1964) The laws of bone structure, 1st edn. Springfield, Ill, Thomas. ISSN: 0002-9629Google Scholar
  60. 60.
    Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6:313–326.  https://doi.org/10.1007/BF00041724CrossRefGoogle Scholar
  61. 61.
    Cowin SC, Nachlinger RR (1978) Bone remodeling III: uniqueness and stability in adaptive elasticity theory. J Elast 8:285–295.  https://doi.org/10.1007/BF00130467CrossRefGoogle Scholar
  62. 62.
    Cowin SC, Sadegh AM, Luo GM (1992) An evolutionary Wolff’s law for trabecular architecture. J Biomech Eng 114:129.  https://doi.org/10.1115/1.2895436CrossRefPubMedGoogle Scholar
  63. 63.
    Hegedus DH, Cowin SC (1976) Bone remodeling II: small strain adaptive elasticity. J Elast 6:337–352.  https://doi.org/10.1007/BF00040896CrossRefGoogle Scholar
  64. 64.
    Perren SM (1979) Physical and biological aspects of fracture healing with special reference to internal fixation. Clin Orthop Relat Res 175–96Google Scholar
  65. 65.
    Carter DR (1987) Mechanical loading history and skeletal biology. J Biomech 20:1095–1109.  https://doi.org/10.1016/0021-9290(87)90027-3CrossRefPubMedGoogle Scholar
  66. 66.
    Carter DR, Orr TE, Fyhrie DP (1989) Relationships between loading history and femoral cancellous bone architecture. J Biomech 22:231–244.  https://doi.org/10.1016/0021-9290(89)90091-2CrossRefPubMedGoogle Scholar
  67. 67.
    Fyhrie DP, Carter DR (1986) A unifying principle relating stress to trabecular bone morphology. J Orthop Res 4:304–317.  https://doi.org/10.1002/jor.1100040307CrossRefPubMedGoogle Scholar
  68. 68.
    Whalen RT, Carter DR, Steele CR (1988) Influence of physical activity on the regulation of bone density. J Biomech 21:825–837.  https://doi.org/10.1016/0021-9290(88)90015-2CrossRefPubMedGoogle Scholar
  69. 69.
    Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20:1135–1150.  https://doi.org/10.1016/0021-9290(87)90030-3CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Reiter TJ, Rammerstorfer FG, Bohm HJ (1990) Numerical algorithm for the simulation of bone remodeling. Am Soc Mech Eng Bioeng Div BED 17:181–184Google Scholar
  71. 71.
    Harrigan TP, Hamilton JJ (1992) An analytical and numerical study of the stability of bone remodelling theories: dependence on microstructural stimulus. J Biomech 25:477–488.  https://doi.org/10.1016/0021-9290(92)90088-ICrossRefPubMedGoogle Scholar
  72. 72.
    Harrigan TP, Hamilton JJ (1992) Optimality conditions for finite element simulation of adaptive bone remodeling. Int J Solids Struct 29:2897–2906.  https://doi.org/10.1016/0020-7683(92)90147-LCrossRefGoogle Scholar
  73. 73.
    Harrigan TP, Hamilton JJ (1993) Finite element simulation of adaptive bone remodelling: a stability criterion and a time stepping method. Int J Numer Methods Eng 36:837–854.  https://doi.org/10.1002/nme.1620360508CrossRefGoogle Scholar
  74. 74.
    Pettermann HE, Reiter TJ, Rammerstorfer FG (1997) Computational simulation of internal bone remodeling. Arch Comput Methods Eng 4:295–323.  https://doi.org/10.1007/BF02737117CrossRefGoogle Scholar
  75. 75.
    Prendergast PJ, Huiskes R, Søballe K (1997) Biophysical stimuli on cells during tissue differentiation at implant interfaces. J Biomech 30:539–548.  https://doi.org/10.1016/S0021-9290(96)00140-6CrossRefPubMedGoogle Scholar
  76. 76.
    Kuiper JH, Richardson JB, Ashton BA (2000) Computer simulation to study the effect of fracture site movement on tissue formation and fracture stiffness restoration. Eur Congr Comput Methods Appl Sci Eng 1–6Google Scholar
  77. 77.
    Ament C, Hofer EP (2000) A fuzzy logic model of fracture healing. J Biomech 33:961–968.  https://doi.org/10.1016/S0021-9290(00)00049-XCrossRefPubMedGoogle Scholar
  78. 78.
    Lacroix D, Prendergast PJ, Li G, Marsh D (2002) Biomechanical model to simulate tissue differentiation and bone regeneration: application to fracture healing. Med Biol Eng Comput 40:14–21.  https://doi.org/10.1007/BF02347690CrossRefPubMedGoogle Scholar
  79. 79.
    Lacroix D, Prendergast PJJ (2002) A mechano-regulation model for tissue differentiation during fracture healing: analysis of gap size and loading. J Biomech 35:1163–1171.  https://doi.org/10.1016/S0021-9290(02)00086-6CrossRefPubMedGoogle Scholar
  80. 80.
    McNamara LM, Prendergast PJ (2007) Bone remodelling algorithms incorporating both strain and microdamage stimuli. J Biomech 40:1381–1391.  https://doi.org/10.1016/j.jbiomech.2006.05.007CrossRefGoogle Scholar
  81. 81.
    Doblaré M, Garcı́a JM (2002) Anisotropic bone remodelling model based on a continuum damage-repair theory. J Biomech 35:1–17.  https://doi.org/10.1016/S0021-9290(01)00178-6CrossRefPubMedGoogle Scholar
  82. 82.
    Liu X, Niebur GL (2008) Bone ingrowth into a porous coated implant predicted by a mechano-regulatory tissue differentiation algorithm. Biomech Model Mechanobiol 7:335–344.  https://doi.org/10.1007/s10237-007-0100-3CrossRefPubMedGoogle Scholar
  83. 83.
    Mulvihill BM, Prendergast PJ (2010) Mechanobiological regulation of the remodelling cycle in trabecular bone and possible biomechanical pathways for osteoporosis. Clin Biomech 25:491–498.  https://doi.org/10.1016/j.clinbiomech.2010.01.006CrossRefGoogle Scholar
  84. 84.
    Belinha J, Jorge RMN, Dinis LMJSJS (2012) A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic bone tissue material law. Comput Methods Biomech Biomed Engin 5842:1–15.  https://doi.org/10.1080/10255842.2012.654783CrossRefGoogle Scholar
  85. 85.
    Belinha J, Jorge RMM Natal, Dinis LMJS (2012) Bone tissue remodelling analysis considering a radial point interpolator meshless method. Eng Anal Bound Elem 36:1660–1670.  https://doi.org/10.1016/j.enganabound.2012.05.009CrossRefGoogle Scholar
  86. 86.
    Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech 20:785–794.  https://doi.org/10.1016/0021-9290(87)90058-3CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Komarova SV, Smith RJ, Dixon SJ, Sims SM, Wahl LM (2003) Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone 33:206–215.  https://doi.org/10.1016/S8756-3282(03)00157-1CrossRefGoogle Scholar
  88. 88.
    Herries DG (1977) Biochemical systems analysis. a study of function and design in molecular biology. Biochem Educ 5:84.  https://doi.org/10.1016/0307-4412(77)90075-9CrossRefGoogle Scholar
  89. 89.
    Martin MJ, Buckland-Wright JC (2004) Sensitivity analysis of a novel mathematical model identifies factors determining bone resorption rates. Bone 35:918–928.  https://doi.org/10.1016/j.bone.2004.06.010CrossRefPubMedGoogle Scholar
  90. 90.
    Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229:293–309.  https://doi.org/10.1016/j.jtbi.2004.03.023CrossRefGoogle Scholar
  91. 91.
    Geris L, Reed AAC, Vander Sloten J, Simpson AHRW, van Oosterwyck H (2010) Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 6:e1000915.  https://doi.org/10.1371/journal.pcbi.1000915CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Geris L, Sloten J Vander, Van Oosterwyck H (2008) Mathematical modelling of bone regeneration including angiogenesis : design of treatment strategies for atrophic non-union. In: 54th annual meeting of the orthopaedic research society, p 2005Google Scholar
  93. 93.
    Pivonka P, Zimak J, Smith DW, Gardiner BS, Dunstan CR, Sims NA, John Martin T, Mundy GR, Martin TJ, Mundy GR, John Martin T, Mundy GR (2008) Model structure and control of bone remodeling: a theoretical study. Bone 43:249–263.  https://doi.org/10.1016/j.bone.2008.03.025CrossRefGoogle Scholar
  94. 94.
    Ryser MD, Nigam N, Komarova SV (2009) Mathematical modeling of spatio-temporal dynamics of a single bone multicellular unit. J Bone Miner Res 24:860–870.  https://doi.org/10.1359/jbmr.081229CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Amor N, Geris L, Vander Sloten J, Van Oosterwyck H (2009) Modelling the early phases of bone regeneration around an endosseous oral implant. Comput Methods Biomech Biomed Engin 12:459–468.  https://doi.org/10.1080/10255840802687392CrossRefPubMedGoogle Scholar
  96. 96.
    Amor N, Geris L, Vander Sloten J, Van Oosterwyck H (2011) Computational modelling of biomaterial surface interactions with blood platelets and osteoblastic cells for the prediction of contact osteogenesis. Acta Biomater 7:779–790.  https://doi.org/10.1016/j.actbio.2010.09.025CrossRefPubMedGoogle Scholar
  97. 97.
    Buser D, Broggini N, Wieland M, Schenk RK, Denzer AJ, Cochran DL, Hoffmann B, Lussi A, Steinemann SG (2004) Enhanced bone apposition to a chemically modified SLA titanium surface. J Dent Res 83:529–533.  https://doi.org/10.1177/154405910408300704CrossRefPubMedGoogle Scholar
  98. 98.
    Colnot C, Romero DM, Huang S, Rahman J, Currey JA, Nanci A, Brunski JB, Helms JA (2007) Molecular analysis of healing at a bone-implant interface. J Dent Res 86:862–867.  https://doi.org/10.1177/154405910708600911CrossRefPubMedGoogle Scholar
  99. 99.
    Huiskes R, Van Driel WD, Prendergast PJ, Søballe K (1997) A biomechanical regulatory model for periprosthetic fibrous-tissue differentiation. J Mater Sci Mater Med 8:785–788.  https://doi.org/10.1023/A:1018520914512CrossRefPubMedGoogle Scholar
  100. 100.
    Bailón-Plaza A, Van Der Meulen MCH (2003) Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 36:1069–1077.  https://doi.org/10.1016/S0021-9290(03)00117-9CrossRefPubMedGoogle Scholar
  101. 101.
    García-Aznar JM, Kuiper JH, Gómez-Benito MJ, Doblaré M, Richardson JB (2007) Computational simulation of fracture healing: influence of interfragmentary movement on the callus growth. J Biomech 40:1467–1476.  https://doi.org/10.1016/j.jbiomech.2006.06.013CrossRefPubMedGoogle Scholar
  102. 102.
    García JM, Doblaré M, Cueto E (2000) Simulation of bone internal remodeling by means of the α -shape-based natural element method. In: European congress on computational methods in applied sciences and engineering. BarcelonaGoogle Scholar
  103. 103.
    Gómez-Benito MJ, García-Aznar JM, Kuiper JH, Doblaré M (2005) Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 235:105–119.  https://doi.org/10.1016/j.jtbi.2004.12.023CrossRefPubMedGoogle Scholar
  104. 104.
    Andreykiv A, Van Keulen F, Prendergast PJ (2008) Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 7:443–461.  https://doi.org/10.1007/s10237-007-0108-8CrossRefPubMedGoogle Scholar
  105. 105.
    Isaksson H, van Donkelaar CC, Huiskes R, Ito K (2008) A mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 252:230–246.  https://doi.org/10.1016/j.jtbi.2008.01.030CrossRefPubMedGoogle Scholar
  106. 106.
    Hambli R (2014) Connecting mechanics and bone cell activities in the bone remodeling process: an integrated finite element modeling. Front Bioeng Biotechnol 2:6.  https://doi.org/10.3389/fbioe.2014.00006CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Geris L, Vander Sloten J, Van Oosterwyck H (2010) Connecting biology and mechanics in fracture healing: an integrated mathematical modeling framework for the study of nonunions. Biomech Model Mechanobiol 9:713–724.  https://doi.org/10.1007/s10237-010-0208-8CrossRefPubMedGoogle Scholar
  108. 108.
    Geris L, Gerisch A, Vander Sloten J, Weiner R, Van Oosterwyck H (2008) Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 251:137–158.  https://doi.org/10.1016/j.jtbi.2007.11.008CrossRefPubMedGoogle Scholar
  109. 109.
    Yi W, Wang C, Liu X (2015) A microscale bone remodeling simulation method considering the influence of medicine and the impact of strain on osteoblast cells. Finite Elem Anal Des 104:16–25.  https://doi.org/10.1016/j.finel.2015.04.007CrossRefGoogle Scholar
  110. 110.
    Lerebours C, Buenzli PR, Scheiner S, Pivonka P (2016) A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech Model Mechanobiol 15:43–67.  https://doi.org/10.1007/s10237-015-0705-xCrossRefPubMedGoogle Scholar
  111. 111.
    Belinha J, Dinis LMJS (2006) Elasto-plastic analysis of plates by the element free Galerkin method. Eng Comput 23:525–551.  https://doi.org/10.1108/02644400610671126CrossRefGoogle Scholar
  112. 112.
    Belinha J, Dinis LMJS (2007) Nonlinear analysis of plates and laminates using the element free Galerkin method. Compos Struct 78:337–350.  https://doi.org/10.1016/j.compstruct.2005.10.007CrossRefGoogle Scholar
  113. 113.
    Belinha J, Dinis LMJS, Jorge RMN (2009) The natural neighbour radial point interpolation method: dynamic applications. Eng Comput 26:911–949.  https://doi.org/10.1108/02644400910996835CrossRefGoogle Scholar
  114. 114.
    Dinis LMJS, Jorge RMN, Belinha J (2010) An unconstrained third-order plate theory applied to functionally graded plates using a meshless method. Mech Adv Mater Struct 17:108–133.  https://doi.org/10.1080/15376490903249925CrossRefGoogle Scholar
  115. 115.
    Dinis LMJS, Jorge RMN, Belinha J (2010) A 3D shell-like approach using a natural neighbour meshless method: isotropic and orthotropic thin structures. Compos Struct 92:1132–1142.  https://doi.org/10.1016/j.compstruct.2009.10.014CrossRefGoogle Scholar
  116. 116.
    Belinha J, Dinis LMJS, Jorge RMN (2013) Composite laminated plate analysis using the natural radial element method. Compos Struct 103:50–67.  https://doi.org/10.1016/j.compstruct.2013.03.018CrossRefGoogle Scholar
  117. 117.
    Belinha J, Dinis LMJS, Jorge RM Natal (2013) Analysis of thick plates by the natural radial element method. Int J Mech Sci 76:33–48.  https://doi.org/10.1016/j.ijmecsci.2013.08.011CrossRefGoogle Scholar
  118. 118.
    Moreira S, Belinha J, Dinis LMJSJS, Jorge RMNN (2014) Análise de vigas laminadas utilizando o natural neighbour radial point interpolation method. Rev Int Metod Numer para Calc y Disen en Ing 30:108–120.  https://doi.org/10.1016/j.rimni.2013.02.002CrossRefGoogle Scholar
  119. 119.
    Azevedo JMC, Belinha J, Dinis LMJS, Jorge RM Natal (2015) Crack path prediction using the natural neighbour radial point interpolation method. Eng Anal Bound Elem 59:144–158.  https://doi.org/10.1016/j.enganabound.2015.06.001CrossRefGoogle Scholar
  120. 120.
    Belinha J, Araújo AL, Ferreira AJM, Dinis LMJS, Jorge RM Natal (2016) The analysis of laminated plates using distinct advanced discretization meshless techniques. Compos Struct 143:165–179.  https://doi.org/10.1016/j.compstruct.2016.02.021CrossRefGoogle Scholar
  121. 121.
    Belinha J, Azevedo JMC, Dinis LMJS, Jorge RM Natal (2016) The natural neighbor radial point interpolation method extended to the crack growth simulation. Int J Appl Mech 08:1650006.  https://doi.org/10.1142/S175882511650006XCrossRefGoogle Scholar
  122. 122.
    Belinha J, Dinis LMJS, Jorge RMN (2015) The meshless methods in the bone tissue remodelling analysis. Procedia Eng 110:51–58.  https://doi.org/10.1016/j.proeng.2015.07.009CrossRefGoogle Scholar
  123. 123.
    Belinha J, Dinis LMJS, Jorge RMN (2015) The mandible remodeling induced by dental implants: a meshless approach. J Mech Med Biol 15:1550059.  https://doi.org/10.1142/S0219519415500591CrossRefGoogle Scholar
  124. 124.
    Tavares CSS, Belinha J, Dinis LMJS, Jorge RMN (2015) The elasto-plastic response of the bone tissue due to the insertion of dental implants. Procedia Eng 110:37–44.  https://doi.org/10.1016/j.proeng.2015.07.007CrossRefGoogle Scholar
  125. 125.
    Belinha J, Dinis LMJSMJS, Jorge RMM Natal (2016) The analysis of the bone remodelling around femoral stems: A meshless approach. Math Comput Simul 121:64–94.  https://doi.org/10.1016/j.matcom.2015.09.002CrossRefGoogle Scholar
  126. 126.
    García-Aznar JM, Rueberg T, Doblare M (2005) A bone remodelling model coupling microdamage growth and repair by 3D BMU-activity. Biomech Model Mechanobiol 4:147–167.  https://doi.org/10.1007/s10237-005-0067-xCrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Liew KM, Wu HY, Ng TY (2002) Meshless method for modeling of human proximal femur: treatment of nonconvex boundaries and stress analysis. Comput Mech 28:390–400.  https://doi.org/10.1007/s00466-002-0303-5CrossRefGoogle Scholar
  128. 128.
    Lee JD, Chen Y, Zeng X, Eskandarian A, Oskard M (2007) Modeling and simulation of osteoporosis and fracture of trabecular bone by meshless method. Int J Eng Sci 45:329–338.  https://doi.org/10.1016/j.ijengsci.2007.03.007CrossRefGoogle Scholar
  129. 129.
    Taddei F, Pani M, Zovatto L, Tonti E, Viceconti M (2008) A new meshless approach for subject-specific strain prediction in long bones: evaluation of accuracy. Clin Biomech 23:1192–1199.  https://doi.org/10.1016/j.clinbiomech.2008.06.009CrossRefGoogle Scholar
  130. 130.
    Buti F, Cacciagrano D, Corradini F, Merelli E, Tesei L, Pani M (2010) Bone remodelling in bioshape. Electron Notes Theor Comput Sci 268:17–29.  https://doi.org/10.1016/j.entcs.2010.12.003CrossRefGoogle Scholar
  131. 131.
    Moreira SF, Belinha J, Dinis LMJS, Natal Jorge RM (2014) A global numerical analysis of the “central incisor/local maxillary bone” system using a meshless method. MCB Mol Cell Biomech 11:151–184.  https://doi.org/10.3970/mcb.2014.011.151

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. C. Marques
    • 1
  • Jorge Belinha
    • 2
    Email author
  • R. Natal Jorge
    • 3
  • A. F. Oliveira
    • 4
  1. 1.Institute of Mechanical Engineering and Industrial Management (INEGI)PortoPortugal
  2. 2.Department of Mechanical Engineering, School of EngineeringPolytechnic of Porto (ISEP)PortoPortugal
  3. 3.Faculty of Engineering, Mechanical Engineering DepartmentUniversity of Porto (FEUP)PortoPortugal
  4. 4.Medical Teaching Department—CHP/HSAInstituto de Ciencias Biomédicas Abel Salazar (ICBAS)PortoPortugal

Personalised recommendations