Advertisement

Studying Effect of Adding Buffer Gases to TRIES Gas on the Electron Transport Coefficients

  • Pham Xuan Hien
  • Phan Thi Tuoi
  • Tang Cam Nhung
  • Do Anh TuanEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 104)

Abstract

The electron transport coefficients in TRIES-Kr, TRIES-He, TRIES-Xe and TRIES-Ne mixtures were firstly calculated by using two-term approximation of the Boltzmann equation for the E/N (ratio of the electric field E to the neutral number density N) range of 0.1–1000 Td (Townsend). The influences of adding different amounts of inert gases on the electron transport coefficient of TRIES-inert gases mixtures are investigated for industrial purposes, specifically in plasma polymerization and plasma enhancing chemical vapour deposition.

Keywords

Triethoxysilane Boltzmann equation analysis Electron transport coefficients 

References

  1. 1.
    Dobkin, D.M., Mokhtari, S., Schmidt, M., Robinson, L., Sherman, A.: Mechanisms of deposition of SiO2 from TEOS and related organosilicon compounds and ozone. J. Electrochem. Soc. 142(7), 2332–2340 (1995)CrossRefGoogle Scholar
  2. 2.
    Zajíčkova, L., Ohlidal, I., Janča, J.: Plasma-enhanced chemical vapour deposition of thin films from tetraethoxysilane and methanol: optical properties and XPS analyses. Thin Solid Films 280, 26–36 (1996)CrossRefGoogle Scholar
  3. 3.
    Lo, C.H., Hung, W.S., Huang, S.H., Guzman, M.D., Rouessac, V., Lee, K.R., Lai, J.Y.: Plasma deposition of tetraethoxysilane on polycarbonate membrane for pervaporation of tetrafluoropropanol aqueous solution. J. Membr. Sci. 329(5), 138–145 (2009)CrossRefGoogle Scholar
  4. 4.
    Nöthe, M., Bolt, H.: Plasma processes and film deposition using tetraethoxysilane. Surf. Coat. Technol. 131(1–3), 102–108 (2000)CrossRefGoogle Scholar
  5. 5.
    Sawada, Y., Ogawa, S., Kogoma, M.: Synthesis of plasma-polymerized tetraethoxysilane and hexamethyldisiloxane films prepared by atmospheric pressure glow discharge. J. Phys. D 28, 1661–1669 (1995)CrossRefGoogle Scholar
  6. 6.
    Holtgrave, J., Riehl, K., Abner, D., Haaland, P.D.: Ion chemistry in tetraethylorthosilicate (C2H5O)4Si. Chem. Phys. Lett. 215(6), 533–548 (1993)CrossRefGoogle Scholar
  7. 7.
    Takizawa, K., Mori, Y., Miyatake, N., Murata, K.: Characteristics of monopole antenna plasmas for TEOS PECVD. Thin Solid Films 516(11), 3605–3609 (2008)CrossRefGoogle Scholar
  8. 8.
    Granier, A., Vervloet, M., Aumaille, K., Vallée, C.: Optical emission spectra of TEOS and HMDSO derived plasmas used for thin film deposition. Plasma Source Sci. Technol. 12(1), 89–96 (2003)CrossRefGoogle Scholar
  9. 9.
    Tuan, D.A., Jeon, B.H.: Electron collision cross sections for the tetraethoxysilanemolecule and electron transport coefficients in tetraethoxysilane-O2 and tetraethoxysilane-Armixtures. J. Phys. Soc. Jpn. 81(6), 064301-1-8 (2012)CrossRefGoogle Scholar
  10. 10.
    Tuan, D.A.: Analysis of electron transport coefficients in binary mixtures of TEOS gas with Kr, Xe, He and Ne gases for using in plasma assisted thin-film deposition. J. Electr. Eng. Technol. 11(2), 455–462 (2016)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kudoh, Y., Homma, Y., Sakuma, N., Furusawa, T.: Directional plasma CVD technology for sub-quarter-micron feature size multilevel interconnections. Jpn. J. Appl. Phys. 37, 1145–1149 (1998)CrossRefGoogle Scholar
  12. 12.
    Tuoi, P.T., Hien, P.X., Tuan, D.A.: Electron collision cross sections for the TRIES molecule and electron transport coefficients in TRIES-Ar and TRIES-O2 mixtures. J. Korean Phys. Soc. 73(12), 1855–1862 (2018)CrossRefGoogle Scholar
  13. 13.
    Hayashi, M.: Luminous layers in the prebreakdown region of low pressure noble gases. J. Phys. D 15(8), 1411–1418 (1982)CrossRefGoogle Scholar
  14. 14.
    Suzuki, M., Taniguchi, T., Yoshimura, N., Tagashira, H.: Momentum transfer cross section of Xenon deducted from electron drift velocity data. J. Phys. D 25(1), 50–56 (1992)CrossRefGoogle Scholar
  15. 15.
    Tagashira, H., Sakai, Y., Sakamoto, S.: The development of electron avalanches in Argon at high E/N values. II. Boltzmann equation analysis. J. Phys. D 10(7), 1051–1064 (1977)CrossRefGoogle Scholar
  16. 16.
    Tuan, D.A.: Determination of electron collision cross sections for F2, Cl2 molecules, and electron transport coefficients in mixture gases as prospective substitutes for the SF6 gas in industrial applications. Ph.D. Dissertation, Dongguk Univ., Korea (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of Transport and CommunicationsHanoiVietnam
  2. 2.Faculty of Electronics and Electrical EngineeringHung Yen University of Technology and EducationHung YenVietnam
  3. 3.Thai Nguyen University of TechnologyThai NguyenVietnam
  4. 4.Department of Science and Technology Management and International CooperationHung Yen University of Technology and EducationHung YenVietnam

Personalised recommendations