Advertisement

Optimization of Manufacturing Time in Internal Grinding

  • Le Xuan Hung
  • Le Hong Ky
  • Tran Thi Hong
  • Nguyen Van Cuong
  • Do Duc Trung
  • Nguyen Huu Phan
  • Luu Anh Tung
  • Ngoc Pi VuEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 104)

Abstract

This paper introduces an optimization study on determination of optimum replaced grinding wheel diameter in internal grinding process. In this study, the minimum manufacturing time was chosen as the objective of optimization problem. Also, several grinding parameters containing the initial grinding wheel diameter, the radial grinding wheel wear per dress, the total depth of dressing cut and the wheel life were taken into the investigation. In addition, to evaluate the influences of these input factors on the optimum replaced wheel diameter, a simulation experiment was conducted. Lastly, a regression model was presented for determination of the optimum replaced wheel diameter.

Keywords

Grinding Internal grinding Manufacturing time Manufacturing time optimization Replaced grinding wheel diameter Tool steel 

Notes

Acknowledgments

The work described in this paper was supported by Thai Nguyen University of Technology for a scientific project.

References

  1. 1.
    Malkin, S., Guo, C.: Grinding Technology: Theory and Applications of Machining with Abrasives. Industrial Press, New York (2008)Google Scholar
  2. 2.
    Rowe, W.B.: Principle of Modern Grinding Technology. William Andrew, Norwich (2009)Google Scholar
  3. 3.
    Chatterjee, S., Rudrapati, R., Kumarpal, P., Nandi, G.: Experiments, analysis and parametric optimization of cylindrical traverse cut grinding of aluminium bronze. Mater. Today Proc. 5(2), 5272–5280 (2018). Part 1CrossRefGoogle Scholar
  4. 4.
    Vu, N.-P., Nguyen, Q.-T., Tran, T.-H., Le, H.-K., Nguyen, A.-T., Luu, A.-T., Nguyen, V.-T., Le, X.-H.: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine. Appl. Sci. 9, 957 (2019)CrossRefGoogle Scholar
  5. 5.
    Tung, L.A., Pi, V.N., Ha, D.T.T., Hung, L.X., Banh, T.L.: A study on optimization of surface roughness in surface grinding 9CrSi tool steel by using Taguchi method. In: Fujita, H., et al. (eds.) ICERA 2018. LNNS, vol. 63, pp. 100–108 (2019).  https://doi.org/10.1007/978-3-030-04792-4_15Google Scholar
  6. 6.
    Gupta, R., Shishodia, K.S., Sekhon, G.S.: Optimization of grinding parameters using enumeration method. J. Mater. Process. Technol. 112, 63–67 (2001)CrossRefGoogle Scholar
  7. 7.
    Wen, X.M., Tay, A.A.O., Nee, A.Y.C.: Micro-computer-based optimization of the surface grinding process. J. Mater. Process. Technol. 29(1–3), 75–90 (1992)CrossRefGoogle Scholar
  8. 8.
    Mekala, K., Chandradas, J., Chandrasekaran, K., Kannan, T.T.M., Ramesh, E., Babu, R.N.: Optimization of cylindrical grinding parameters of austenitic stainless steel rods (AISI 316) by Taguchi method. Int. J. Mech. Eng. Robot. Res. 3, 208–215 (2014)Google Scholar
  9. 9.
    Tu, H.X., Thao, L.P., Hong, T.T., Nga, N.T.T., Trung, D.D., Gong, J., Pi, V.N.: Influence of dressing parameters on surface roughness of workpiece for grinding hardened 9XC tool steel. In: IOP Conference Series: Materials Science and Engineering, vol. 542 (2019).  https://doi.org/10.1088/1757-899X/542/1/012008CrossRefGoogle Scholar
  10. 10.
    Vidal, G., Ortega, N., Bravo, H., Dubar, M., González, H.: An analysis of electroplated cBN grinding wheel wear and conditioning during creep feed grinding of aeronautical alloys. Metals 8, 1–24 (2018)CrossRefGoogle Scholar
  11. 11.
    Daneshia, A., Jandaghia, N., Tawakoli, T.: Effect of dressing on internal cylindrical grinding. Procedia CIRP 14, 37–41 (2014)CrossRefGoogle Scholar
  12. 12.
    Le, X.H., Tran, T.H., Luu, A.T., Nguyen, T.T.N., Vu, N.P.: Optimum dressing parameters for maximum material removal rate when internal cylindrical grinding using Taguchi method. Int. J. Mech. Eng. Technol. 9, 123–129 (2018)Google Scholar
  13. 13.
    Gupta, R., Shishodia, K.S., Sekhon, G.S.: Optimization of grinding process parameters using enumeration method. J. Mater. Process. Technol. 112(1), 63–67 (2001)CrossRefGoogle Scholar
  14. 14.
    Alberdi, R., Sanchez, J.A., Pombo, I., Ortega, N., Barrenetxea, D.: Strategies for optimal use of fluids in grinding. Int. J. Mach. Tools Manuf 51(6), 491–499 (2011)CrossRefGoogle Scholar
  15. 15.
    Hung, L.X., Liên, V.T., Pi, V.N., Long, B.T.: A study on coolant parameters in internal grinding of 9CrSi steel. Mater. Sci. Forum 950, 24–31 (2019)CrossRefGoogle Scholar
  16. 16.
    Tu, H.X., Jun, G., Hien, B.T., Hung, L.X., Tung, L.A., Pi, V.N.: Determining optimum parameters of cutting fluid in external grinding of 9CrSi steel using Taguchi technique. SSRG Int. J. Mech. Eng. 5(6), 1–5 (2018).  https://doi.org/10.14445/23488360/IJME-V5I6P101CrossRefGoogle Scholar
  17. 17.
    Tu, H.X., Pi, V.N., Jun, G.: A study on determination of optimum parameters for lubrication in external cylindrical grinding base on Taguchi method. Key Eng. Mater. 796, 97–102 (2019)CrossRefGoogle Scholar
  18. 18.
    Wegener, K., Hoffmeister, H.-W., Karpuschewski, B., Kuster, F., Rabiey, M.: Conditioning and monitoring of grinding wheels. CIRP Ann. 60(2), 757–777 (2011)CrossRefGoogle Scholar
  19. 19.
    Yadav, H.S., Shrivastava, R.K.: Effect of process parameters on surface roughness and MRR in cylindrical grinding using response surface method. Int. J. Eng. Res. Technol. 3(3) (2014)Google Scholar
  20. 20.
    Agarwal, S.: Optimizing machining parameters to combine high productivity with high surface integrity in grinding silicon carbide ceramics. Ceram. Int. 42(5), 6244–6262 (2016)CrossRefGoogle Scholar
  21. 21.
    Pi, V.N., The, P.Q., Khiem, V.H., Huong, N.N.: Cost optimization of external cylindrical grinding. Appl. Mech. Mater. 312, 982–989 (2013)CrossRefGoogle Scholar
  22. 22.
    Tu, H.X., Jun, G., Hung, L.X., Tung, L.A., Pi, V.N.: Calculation of optimum exchanged grinding wheel diameter when external grinding tool steel 9CrSi. Int. J. Mech. Eng. Robot. Res. 8(1), 59–64 (2019)Google Scholar
  23. 23.
    Hung, L.X., Pi, V.N., Tung, L.A., Tu, H.X., Jun, G., Long, B.T.: Determination of optimal exchanged grinding wheel diameter when internally grinding alloy tool steel 9CrSi. In: IOP Conference Series: Materials Science and Engineering, vol. 417, pp. 012–026 (2018)CrossRefGoogle Scholar
  24. 24.
    Pi, V.N., Hung, L.X., Tung, L.A., Long, B.T.: Cost optimization of internal grinding. J. Mater. Sci. Eng. B 6, 291–296 (2016)Google Scholar
  25. 25.
    Hung, L.X., Ky, L.H., Hong, T.T., Dung, H.T., Lien, V.T., Tung, L.A., Long, B.T., Pi, V.N.: A study on cost optimization of internal cylindrical grinding. Int. J. Mech. Eng. Technol. (IJMET) 10(1), 414–423 (2019)Google Scholar
  26. 26.
    Tran, T.-H., Le, X.-H., Nguyen, Q.-T., Le, H.-K., Hoang, T.-D., Luu, A.-T., Banh, T.-L., Ngoc-Pi, Vu: Optimization of exchanged grinding wheel diameter for minimum grinding cost in internal grinding. Appl. Sci. 9(7), 1363 (2019).  https://doi.org/10.3390/app9071363CrossRefGoogle Scholar
  27. 27.
    Hung, L.X., Pi, V.N., Tung, L.A., Xuan, T.H., Jun, G., Long, B.T.: Determination of optimum exchanged grinding wheel diameter when internal grinding alloy tool steel 9CrSi. In: IOP Conference Series: Materials Science and Engineering, vol. 417 (2018).  https://doi.org/10.1088/1757-899X/417/1/012026CrossRefGoogle Scholar
  28. 28.
    Pi, V.N., Tung, L.A., Hung, L.X., Ngoc, N.V.: Experimental determination of optimum exchanged diameter in surface grinding process. J. Environ. Sci. Eng. A 6, 85–89 (2017)Google Scholar
  29. 29.
    Hoang, T.D., Tran, T.H., Cuong, N.V., Le, H.K., Nga, N.T.T.: An optimization study on surface grinding stainless steel. Int. J. Eng. Technol. 7(4), 6621–6625 (2018).  https://doi.org/10.14419/ijet.v7i4.29442CrossRefGoogle Scholar
  30. 30.
    Tran, T.-H., Luu, A.-T., Nguyen, Q.-T., Le, H.-K., Nguyen, A.-T., Hoang, T.-D., Le, X.-H., Banh, T.-L., Vu, N.-P.: Optimization of exchanged grinding wheel diameter for surface grinding tool steel based on the cost analysis. Metals 9(4), 448 (2019).  https://doi.org/10.3390/met9040448CrossRefGoogle Scholar
  31. 31.
    Pi, V.N., Khiem, V.H., Cuong, P.T.: Building formulas for calculation of cutting regime for external cylindrical grinding. Vietnam Mech. Eng. J. (in Vietnamese), 12, 18–23 (2012)Google Scholar
  32. 32.
    Kozuro, L.M., Panov, A.A., Remizovski, E.I., Tristosepdov, P.S.: Handbook of Grinding. Publish Housing of High-education, Minsk (1981). (in Russian)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Le Xuan Hung
    • 1
  • Le Hong Ky
    • 2
  • Tran Thi Hong
    • 3
  • Nguyen Van Cuong
    • 4
  • Do Duc Trung
    • 5
  • Nguyen Huu Phan
    • 5
  • Luu Anh Tung
    • 1
  • Ngoc Pi Vu
    • 1
    Email author
  1. 1.Thai Nguyen University of TechnologyThai NguyenVietnam
  2. 2.Vinh Long University of Technology EducationVinh LongVietnam
  3. 3.Nguyen Tat Thanh UniversityHo Chi Minh CityVietnam
  4. 4.University of Transport and CommunicationsHanoiVietnam
  5. 5.Faculty of Mechanical EngineeringHanoi University of IndustryHanoiVietnam

Personalised recommendations