Effects of the Tube Diameter on the Mechanical Properties of Black Phosphorene Nanotubes

  • Van-Trang NguyenEmail author
  • Minh-Quy Le
  • Danh-Truong Nguyen
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 104)


We use molecular dynamics finite element method with Stillinger-Weber potential to study the effects of the tube diameter on the mechanical properties of black phosphorene nanotubes (BPNT). Various armchair and zigzag BPNTs with a wide range of diameters from ~12 through ~34 Å are considered. The effects of the tube diameter on the mechanical properties of zigzag tubes are more significant than those of the armchair ones. When increasing the diameter in the studied range, the Young’s modulus and fracture stress increase about 10% and 8.6%; and 109% and 214% for armchair and zigzag tubes, respectively; whereas, the fracture strains decrease very slightly (~3%) for the armchair tubes and increase up to 113% for the zigzag ones. When the diameter of BPNT is sufficiently large, its mechanical properties approach to those of the black phosphorene sheet.


Atomistic simulation Black phosphorene nanotube Mechanical properties 



Van-Trang Nguyen was supported by the Thai Nguyen University of Technology, Thai Nguyen University (Vietnam) under grant number T2017-B01.


  1. 1.
    Lu, W., et al.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7(6), 853–859 (2014)CrossRefGoogle Scholar
  2. 2.
    Li, L., et al.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9(5), 372–377 (2014)CrossRefGoogle Scholar
  3. 3.
    Xia, F., Wang, H., Jia, Y.: Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5, 4458 (2014)CrossRefGoogle Scholar
  4. 4.
    Reich, E.S.: Phosphorene excites materials scientists. Nature 506(7486), 19 (2014)CrossRefGoogle Scholar
  5. 5.
    Kou, L., Chen, C., Smith, S.C.: Phosphorene: fabrication, properties, and applications. J. Phys. Chem. Lett. 6(14), 2794–2805 (2015)CrossRefGoogle Scholar
  6. 6.
    Guo, H., et al.: Phosphorene nanoribbons, phosphorus nanotubes, and van der Waals multilayers. J. Phys. Chem. C 118(25), 14051–14059 (2014)CrossRefGoogle Scholar
  7. 7.
    Yu, S., et al.: A computational study of the electronic properties of one-dimensional armchair phosphorene nanotubes. J. Appl. Phys. 118(16), 164306 (2015)CrossRefGoogle Scholar
  8. 8.
    Li, C., et al.: Tunable bandgap and optical properties of black phosphorene nanotubes. Materials 11(2), 304 (2018)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hu, T., Hashmi, A., Hong, J.: Geometry, electronic structures and optical properties of phosphorus nanotubes. Nanotechnology 26(41), 415702 (2015)CrossRefGoogle Scholar
  10. 10.
    Allec, S.I., Wong, B.M.: Inconsistencies in the electronic properties of phosphorene nanotubes: new insights from large-scale DFT calculations. J. Phys. Chem. Lett. 7(21), 4340–4345 (2016)CrossRefGoogle Scholar
  11. 11.
    Zhang, W., et al.: Strain/stress engineering on the mechanical and electronic properties of phosphorene nanosheets and nanotubes. RSC Adv. 7(81), 51466–51474 (2017)CrossRefGoogle Scholar
  12. 12.
    Chen, W.-H., et al.: Mechanical property assessment of black phosphorene nanotube using molecular dynamics simulation. Comput. Mater. Sci. 133, 35–44 (2017)CrossRefGoogle Scholar
  13. 13.
    Sorkin, V., Zhang, Y.: Mechanical properties of phosphorene nanotubes: a density functional tight-binding study. Nanotechnology 27(39), 395701 (2016)CrossRefGoogle Scholar
  14. 14.
    Hao, J., et al.: Structure and elastic properties of black phosphorus nanotubes: a first‐principles study. Physica Status Solidi (b), 254(10) (2017)CrossRefGoogle Scholar
  15. 15.
    Liu, P., et al.: Mechanical properties and fracture behaviour of defective phosphorene nanotubes under uniaxial tension. J. Phys. D Appl. Phys. 50(48), 485303 (2017)CrossRefGoogle Scholar
  16. 16.
    Takao, Y., Asahina, H., Morita, A.: Electronic structure of black phosphorus in tight binding approach. J. Phys. Soc. Jpn. 50(10), 3362–3369 (1981)CrossRefGoogle Scholar
  17. 17.
    Jiang, J.-W.: Parametrization of Stillinger-Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus. Nanotechnology 26(31), 315706 (2015)CrossRefGoogle Scholar
  18. 18.
    Le, M.-Q., Nguyen, D.-T.: Atomistic simulations of pristine and defective hexagonal BN and SiC sheets under uniaxial tension. Mater. Sci. Eng., A 615, 481–488 (2014)CrossRefGoogle Scholar
  19. 19.
    Nguyen, D.-T., et al.: Effects of various defects on the mechanical properties of black phosphorene. Superlattices Microstruct. 112, 186–199 (2017)CrossRefGoogle Scholar
  20. 20.
    Nguyen, V.-T., Minh-Quy, L.: Compressive buckling of black phosphorene nanotubes: an atomistic study. Mater. Res. Express (2018)Google Scholar
  21. 21.
    Nguyen, V.-T., Nguyen, D.-T., Minh-Quy, L.: Atomistic simulation of the uniaxial tension of black phosphorene nanotubes. Vietnam J. Mech. 40, 163–169 (2018)CrossRefGoogle Scholar
  22. 22.
    Yang, Z., Zhao, J., Wei, N.: Temperature-dependent mechanical properties of monolayer black phosphorus by molecular dynamics simulations. Appl. Phys. Lett. 107(2), 023107 (2015)CrossRefGoogle Scholar
  23. 23.
    Sha, Z.-D., et al.: Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures. J. Phys. D Appl. Phys. 48(39), 395303 (2015)CrossRefGoogle Scholar
  24. 24.
    Ansari, R., Shahnazari, A., Rouhi, S.: A density-functional-theory-based finite element model to study the mechanical properties of zigzag phosphorene nanotubes. Physica E 88, 272–278 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Van-Trang Nguyen
    • 1
    Email author
  • Minh-Quy Le
    • 2
  • Danh-Truong Nguyen
    • 1
    • 2
  1. 1.Faculty of Mechanical EngineeringThai Nguyen University of TechnologyThai NguyenVietnam
  2. 2.Department of Mechanics of Materials and Structures, School of Mechanical EngineeringHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations