Advertisement

A Study on Optimization of Manufacturing Time in External Cylindrical Grinding

  • Luu Anh Tung
  • Tran Thi Hong
  • Nguyen Van Cuong
  • Le Hong Ky
  • T. Muthuramalingam
  • Nguyen Huu Phan
  • Le Xuan Hung
  • Ngoc Pi VuEmail author
Conference paper
Part of the Lecture Notes in Networks and Systems book series (LNNS, volume 104)

Abstract

This paper introduces an optimization study on the determination of the optimum replaced grinding wheel diameter for getting minimum manufacturing time in external grinding stainless steel. In the study, several input grinding parameters including the initial grinding wheel diameter, the total depth of dressing cut, the wheel life and the radial grinding wheel wear per dress. Also, to evaluate the effects of the input parameters on the optimum replaced wheel diameter, a simulation experiment was planned and conducted. Lastly, a regression model to calculate the optimum replaced wheel diameter was suggested.

Keywords

Grinding External grinding Manufacturing time optimization Replaced grinding wheel diameter 

Notes

Acknowledgements

The work described in this paper was supported by Thai Nguyen University of Technology for a scientific project.

References

  1. 1.
    Rowe, W.B.: Principle of Modern Grinding Technology. William Andrew (2009)Google Scholar
  2. 2.
    Malkin, S., Guo, C.: Grinding Technology: Theory and Applications of Machining with Abrasives. Industrial Press (2008)Google Scholar
  3. 3.
    Chatterjee, S., Rudrapati, R., Kumarpal, P., Nandi, G.: Experiments, analysis and parametric optimization of cylindrical traverse cut grinding of aluminium bronze. Mater. Today: Proc. 5(2), 5272–5280 (2018)Google Scholar
  4. 4.
    Vu, N.-P., Nguyen, Q.-T., Tran, T.-H., Le, H.-K., Nguyen, A.-T., Luu, A.-T., Nguyen, V.-T., Le, X.-H.: Optimization of grinding parameters for minimum grinding time when grinding tablet punches by CBN wheel on CNC milling machine. Appl. Sci. 9(5), 957 (2019)CrossRefGoogle Scholar
  5. 5.
    Tung, L.A., Pi, V.N., Ha, D.T.T., Hung, L.X., Banh, T.L.: A study on optimization of surface roughness in surface grinding 9CrSi tool steel by using Taguchi method. In: Fujita, H., et al. (eds.): ICERA 2018. LNNS, vol. 63, pp. 100–108 (2019).  https://doi.org/10.1007/978-3-030-04792-4_15Google Scholar
  6. 6.
    Gupta, R., Shishodia, K.S., Sekhon, G.S.: Optimization of grinding parameters using enumeration method. J. Mater. Process. Technol. 112, 63–67 (2001)CrossRefGoogle Scholar
  7. 7.
    Wen, X.M., Tay, A.A.O., Nee, A.Y.C.: Micro-computer-based optimization of the surface grinding process. J. Mater. Process. Technol. 29(1–3), 75–90 (1992)CrossRefGoogle Scholar
  8. 8.
    Mekala, K., Chandradas, J., Chandrasekaran, K., Kannan, T.T.M., Ramesh, E., Babu, R.N.: Optimization of cylindrical grinding parameters of austenitic stainless steel rods (AISI 316) by Taguchi method. Int. J. Mech. Eng. Rob. Res. 3(2), 208 (2014)Google Scholar
  9. 9.
    Tu, H.X., Thao, L.P., Hong, T.T., Nga, N.T.T., Trung, D.D., Gong, J., Pi, V.N.: Influence of dressing parameters on surface roughness of workpiece for grinding hardened 9XC tool steel. In: IOP Conference Series: Materials Science and Engineering, vol. 542, conference 1 (2018).  https://doi.org/10.1088/1757-899X/542/1/012008CrossRefGoogle Scholar
  10. 10.
    Vidal, G., Ortega, N., Bravo, H., Dubar, M., González, H.: An analysis of electroplated CBN grinding wheel wear and conditioning during creep feed grinding of aeronautical alloys. Metals 8, 1–24 (2018)CrossRefGoogle Scholar
  11. 11.
    Daneshia, A., Jandaghia, N., Tawakoli, T.: Effect of dressing on internal cylindrical grinding. Procedia CIRP 14, 37–41 (2014)CrossRefGoogle Scholar
  12. 12.
    Le, X.H., Tran, T.H., Luu, A.T., Nguyen, T.T.N., Vu, N.P.: Optimum dressing parameters for maximum material removal rate when internal cylindrical grinding using Taguchi method. Int. J. Mech. Eng. Technol. 9, 123–129 (2018)Google Scholar
  13. 13.
    Gupta, R., Shishodia, K.S., Sekhon, G.S.: Optimization of grinding process parameters using enumeration method. J. Mater. Process. Technol. 112(1), 63–67 (2001)CrossRefGoogle Scholar
  14. 14.
    Hung, L.X., Lien, V.T., Pi, V.N., Long, B.T.: A study on coolant parameters in internal grinding of 9CrSi steel. Mater. Sci. Forum 950, 24–31 (2019)CrossRefGoogle Scholar
  15. 15.
    Tu, H.X., Jun, G., Hien, B.T., Hung, L.X., Tung, L.A., Pi, V.N.: Determining optimum parameters of cutting fluid in external grinding of 9CrSi steel using Taguchi technique. SSRG Int. J. Mech. Eng. 5(6), 1–5 (2018).  https://doi.org/10.14445/23488360/IJME-V5I6P101CrossRefGoogle Scholar
  16. 16.
    Tu, H.X., Pi, V.N., Jun, G.: A study on determination of optimum parameters for lubrication in external cylindrical grinding base on Taguchi method. Key Eng. Mater. 796, 97–102 (2019)CrossRefGoogle Scholar
  17. 17.
    Palmer, J., Ghadbeigi, H., Novovic, D., Curtis, D.: An experimental study of the effects of dressing parameters on the topography of grinding wheels during roller dressing. J. Manuf. Process. 31, 348–355 (2018)CrossRefGoogle Scholar
  18. 18.
    Yadav, H.S., Shrivastava, R.K.: Effect of process parameters on surface roughness and Mrr in cylindrical grinding using response surface method. Int. J. Eng. Res. Technol. 3(3) (2014)Google Scholar
  19. 19.
    Pi, V.N., The, P.Q., Khiem, V.H., Huong, N.N.: Cost optimization of external cylindrical grinding. Appl. Mech. Mater. 312, 982–989 (2013)CrossRefGoogle Scholar
  20. 20.
    Tu, H.X., Jun, G., Hung, L.X., Tung, L.A., Pi, V.N.: Calculation of optimum exchanged grinding wheel diameter when external grinding tool steel 9CrSi. Int. J. Mech. Eng. Robot. Res. 8(1), 59–64 (2019)Google Scholar
  21. 21.
    Hung, L.X., Pi, V.N., Tung, L.A., Tu, H.X., Jun, G., Long, B.: Determination of optimal exchanged grinding wheel diameter when internally grinding alloy tool steel 9CrSi. In: IOP Conference Series: Materials Science and Engineering, vol. 417, 012–026 (2018)CrossRefGoogle Scholar
  22. 22.
    Pi, V.N., Hung, L.X., Tung, L.N., Long, B.T.: Cost optimization of internal grinding. J. Mater. Sci. Eng. B 6, 291–296 (2016)Google Scholar
  23. 23.
    Hung, L.X., Ky, L.H., Hong, T.T., Dung, H.T., Lien, V.T., Tung, L.A., Long, B.T., Pi, V.N.: A study on cost optimization of internal cylindrical grinding. Int. J. Mech. Eng. Technol. (IJMET) 10(1), 414–423 (2019)Google Scholar
  24. 24.
    Tran, T.-H., Le, X.-H., Nguyen, Q.-T., Le, H.-K., Hoang, T.-D., Luu, A.-T., Banh, T.-L., Vu, N.-P.: Optimization of exchanged grinding wheel diameter for minimum grinding cost in internal grinding. Appl. Sci. 9(7), 1363 (2019)CrossRefGoogle Scholar
  25. 25.
    Le, X.H., Vu, N.P., Luu, A.T., Tu, H.X., Jun, G., Banh, T.L.: Determination of optimum exchanged grinding wheel diameter when internal grinding alloy tool steel 9CrSi. In: IOP Conference Series: Materials Science and Engineering, vol. 417, conference 1 (2018).  https://doi.org/10.1088/1757-899X/417/1/012026CrossRefGoogle Scholar
  26. 26.
    Pi, V.N., Tung, L.A., Hung, L.X., Van Ngoc, N.: Experimental determination of optimum exchanged diameter in surface grinding process. J. Environ. Sci. Eng. A 6, 85–89 (2017)Google Scholar
  27. 27.
    Hoang, T.D., Tran, T.H., Van Cuong, N., Le, H.K., Nga, N.T.T.: An optimization study on surface grinding stainless steel. Int. J. Eng. Technol. 7(4), 6621–6625 (2018).  https://doi.org/10.14419/ijet.v7i4.29442CrossRefGoogle Scholar
  28. 28.
    Tran, T.-H., Luu, A.-T., Nguyen, Q.-T., Le, H.-K., Nguyen, A.-T., Hoang, T.-D., Le, X.-H., Banh, T.-L., Vu, N.-P.: Optimization of exchanged grinding wheel diameter for surface grinding tool steel based on the cost analysis. Metals 9(4), 448 (2019).  https://doi.org/10.3390/met9040448CrossRefGoogle Scholar
  29. 29.
    Pi, V.N., Khiem, V.H., Cuong, P.T.: Building formulas for calculation of cutting regime for external cylindrical grinding. Vietnam Mech. Eng. J. (12), 18–23 (2012). (in Vietnamese)Google Scholar
  30. 30.
    Kozuro, L.M., Panov, A.A., Remizovski, E.I., Tristosepdov, P.S.: Handbook of Grinding. Publish Housing of High-Education, Minsk (1981)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Luu Anh Tung
    • 1
  • Tran Thi Hong
    • 2
  • Nguyen Van Cuong
    • 3
  • Le Hong Ky
    • 4
  • T. Muthuramalingam
    • 5
  • Nguyen Huu Phan
    • 6
  • Le Xuan Hung
    • 1
  • Ngoc Pi Vu
    • 1
    Email author
  1. 1.Thai Nguyen University of TechnologyThai NguyenVietnam
  2. 2.Nguyen Tat Thanh UniversityHo Chi MinhVietnam
  3. 3.University of Transport and CommunicationsHa NoiVietnam
  4. 4.Vinh Long University of Technology EducationVinh LongVietnam
  5. 5.SRM Institute of Science and TechnologyKattankulathurIndia
  6. 6.Hanoi University of IndustryHanoiVietnam

Personalised recommendations