Advertisement

Clinical Guidelines: A Crossroad of Many Research Areas. Challenges and Opportunities in Process Mining for Healthcare

  • Roberto GattaEmail author
  • Mauro Vallati
  • Carlos Fernandez-Llatas
  • Antonio Martinez-Millana
  • Stefania Orini
  • Lucia Sacchi
  • Jacopo Lenkowicz
  • Mar Marcos
  • Jorge Munoz-Gama
  • Michel Cuendet
  • Berardino de Bari
  • Luis Marco-Ruiz
  • Alessandro Stefanini
  • Maurizio Castellano
Conference paper
  • 719 Downloads
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 362)

Abstract

Clinical Guidelines, medical protocols, and other healthcare indications, cover a significant slice of physicians daily routine, as they are used to support clinical choices also with relevant legal implications. On the one hand, informatics have proved to be a valuable mean for providing formalisms, methods, and approaches to extend clinical guidelines for better supporting the work performed in the healthcare domain. On the other hand, due to the different perspectives that can be considered for addressing similar problems, it lead to an undeniable fragmentation of the field. It may be argued that such fragmentation did not help to propose a practical, accepted, and extensively adopted solutions to assist physicians. As in Process Mining as a general field, Process Mining for Healthcare inherits the requirement of Conformance Checking. Conformance Checking aims to measure the adherence of a particular (discovered or known) process with a given set of data, or vice-versa. Due to the intuitive similarities in terms of challenges and problems to be faced between conformance checking and clinical guidelines, one may be tempted to expect that the fragmentation issue will naturally arise also in the conformance checking field. This position paper is a first step on the direction to embrace experience, lessons learnt, paradigms, and formalisms globally derived from the clinical guidelines challenge. We argue that such new focus, joint with the even growing notoriety and interest in PM4HC, might allow more physicians to make the big jump from user to protagonist becoming more motivated and proactive in building a strong multidisciplinary community.

Keywords

Conformance checking Clinical guidelines Computer interpretable clinical guidelines 

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes, 1st edn. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-19345-3CrossRefzbMATHGoogle Scholar
  2. 2.
    Anani, N., et al.: Applying openEHR’s Guideline Definition Language to the SITS international stroke treatment registry: a European retrospective observational study. BMC Med. Inform. Decis. Mak. 17(1), 7 (2017)CrossRefGoogle Scholar
  3. 3.
    Anselma, L., Piovesan, L., Terenziani, P.: Temporal detection and analysis of guideline interactions. Artif. Intell. Med. 76, 40–62 (2017)CrossRefGoogle Scholar
  4. 4.
    Beale, T., et al.: openEHR Task Planning Specification (2017). https://specifications.openehr.org/releases/PROC/latest/task_planning.html
  5. 5.
    Bilici, E., Despotou, G., Arvanitis, T.N.: The use of computer-interpretable clinical guidelines to manage care complexities of patients with multimorbid conditions: a review. Digit Health 4 (2018)Google Scholar
  6. 6.
    Binder, M., et al.: On analyzing process compliance in skin cancer treatment: an experience report from the evidence-based medical compliance cluster (EBMC\(^{2}\)). In: Ralyté, J., Franch, X., Brinkkemper, S., Wrycza, S. (eds.) CAiSE 2012. LNCS, vol. 7328, pp. 398–413. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-31095-9_26CrossRefGoogle Scholar
  7. 7.
    Boxwala, A.A., et al.: GLIF3: a representation format for sharable computer-interpretable clinical practice guidelines. J. Biomed. Inform. 37(3), 147–161 (2004)CrossRefGoogle Scholar
  8. 8.
    Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness, precision, generalization and simplicity in process discovery. In: Meersman, R., et al. (eds.) OTM 2012. LNCS, vol. 7565, pp. 305–322. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33606-5_19CrossRefGoogle Scholar
  9. 9.
    Chen, C., Chen, K., Hsu, C.Y., Chiu, W.T., Li, Y.C.J.: A guideline-based decision support for pharmacological treatment can improve the quality of hyperlipidemia management. Comput. Methods Progr. Biomed. 97(3), 280–285 (2010)CrossRefGoogle Scholar
  10. 10.
    Ciccarese, P., Caffi, E., Quaglini, S., Stefanelli, M.: Architectures and tools for innovative Health Information Systems: the Guide Project. Int. J. Med. Inform. 74(7–8), 553–562 (2005)CrossRefGoogle Scholar
  11. 11.
    De Bleser, L., Depreitere, R., De Waele, K., Vanhaecht, K., Vlayen, J., Sermeus, W.: Defining pathways. J. Nurs. Manag. 14(7), 553–563 (2006)CrossRefGoogle Scholar
  12. 12.
    Dixon, B.E., et al.: A pilot study of distributed knowledge management and clinical decision support in the cloud. Artif. Intell. Med. 59(1), 45–53 (2013)CrossRefGoogle Scholar
  13. 13.
    Fdez-Olivares, J., Onaindia, E., Castillo, L., Jordan, J., Cozar, J.: Personalized conciliation of clinical guidelines for comorbid patients through multi-agent planning. Artif. Intell. Med. 96, 167–186 (2018)CrossRefGoogle Scholar
  14. 14.
    Fernández-Llatas, C., Meneu, T., Traver, V., Benedi, J.M.: Applying evidence-based medicine in telehealth: an interactive pattern recognition approximation. Int. J. Environ. Res. Public Health 10(11), 5671–5682 (2013)CrossRefGoogle Scholar
  15. 15.
    Ghasemi, M., Amyot, D.: Process mining in healthcare: a systematised literature review. Int. J. Electron. Healthc. 9, 60 (2016)CrossRefGoogle Scholar
  16. 16.
    Goldberg, H.S., et al.: A highly scalable, interoperable clinical decision support service. J. Am. Med. Inform. Assoc. (JAMIA) 21(e1), e55–e62 (2014)CrossRefGoogle Scholar
  17. 17.
    Gonzalez-Ferrer, A., ten Teije, A., Fdez-Olivares, J., Milian, K.: Automated generation of patient-tailored electronic care pathways by translating computer-interpretable guidelines into hierarchical task networks. Artif. Intell. Med. 57(2), 91–109 (2013)CrossRefGoogle Scholar
  18. 18.
    Gooch, P., Roudsari, A.: Computerization of workflows, guidelines, and care pathways: a review of implementation challenges for process-oriented health information systems. J. Am. Med. Inform. Assoc. 18(6), 738–748 (2011)CrossRefGoogle Scholar
  19. 19.
    Grando, M.A., Glasspool, D., Fox, J.: A formal approach to the analysis of clinical computer-interpretable guideline modeling languages. Artif. Intell. Med. 54(1), 1–13 (2012)CrossRefGoogle Scholar
  20. 20.
    Greenes, R.A., Bates, D.W., Kawamoto, K., Middleton, B., Osheroff, J., Shahar, Y.: Clinical decision support models and frameworks: seeking to address research issues underlying implementation successes and failures. J. Biomed. Inform. 78, 134–143 (2018)CrossRefGoogle Scholar
  21. 21.
    Gurgen Erdogan, T., Tarhan, A.: Systematic mapping of process mining studies in healthcare. IEEE Access 6, 1 (2018)CrossRefGoogle Scholar
  22. 22.
    Ibanez-Sanchez, G., et al.: Toward value-based healthcare through interactive process mining in emergency rooms: the stroke case. Int. J. Environ. Res. Public Health 16(10), 1783 (2019)CrossRefGoogle Scholar
  23. 23.
    Institute of Medicine: Clinical Practice Guidelines We Can Trust. The National Academies Press, Washington, DC (2011)Google Scholar
  24. 24.
    Jafarpour, B., Abidi, S.R., Woensel, W.V., Abidi, S.S.R.: Execution-time integration of clinical practice guidelines to provide decision support for comorbid conditions. Artif. Intell. Med. 94, 117–137 (2019)CrossRefGoogle Scholar
  25. 25.
    Johnson, O.A., Ba Dhafari, T., Kurniati, A., Fox, F., Rojas, E.: The ClearPath method for care pathway process mining and simulation. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 239–250. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11641-5_19CrossRefGoogle Scholar
  26. 26.
    Kawamoto, K., et al.: Multi-national, multi-institutional analysis of clinical decision support data needs to inform development of the HL7 virtual medical record standard. AMIA Annu. Symp. Proc. 2010, 377–381 (2010)Google Scholar
  27. 27.
    Kawamoto, K., Greenes, R.A.: The role of standards: what we can expect and when. In: Greenes, R.A. (ed.) Clinical Decision Support, chap. 21, 2nd edn, pp. 599–615. Academic Press, Oxford (2014)CrossRefGoogle Scholar
  28. 28.
    Kaymak, U., Mans, R., van de Steeg, T., Dierks, M.: On process mining in health care. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1859–1864 (2012)Google Scholar
  29. 29.
    Kurniati, A.P., Johnson, O., Hogg, D., Hall, G.: Process mining in oncology: a literature review. In: 2016 6th International Conference on Information Communication and Management (ICICM), pp. 291–297 (2016)Google Scholar
  30. 30.
    Lenkowicz, J., et al.: Assessing the conformity to clinical guidelines in oncology: an example for the multidisciplinary management of locally advanced colorectal cancer treatment. Manag. Decis. 56(10), 2172–2186 (2018)CrossRefGoogle Scholar
  31. 31.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B., Moleman, A.J.: Process mining in healthcare: data challenges when answering frequently posed questions. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) KR4HC/ProHealth - 2012. LNCS (LNAI), vol. 7738, pp. 140–153. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-36438-9_10CrossRefGoogle Scholar
  32. 32.
    Marco-Ruiz, L., Moner, D., Maldonado, J.A., Kolstrup, N., Bellika, J.G.: Archetype-based data warehouse environment to enable the reuse of electronic health record data. Int. J. Med. Inform. 84(9), 702–714 (2015)CrossRefGoogle Scholar
  33. 33.
    Marcos, M., Maldonado, J.A., Martínez-Salvador, B., Boscá, D., Robles, M.: Interoperability of clinical decision-support systems and electronic health records using archetypes: a case study in clinical trial eligibility. J. Biomed. Inform. 46(4), 676–689 (2013)CrossRefGoogle Scholar
  34. 34.
    Martínez-Salvador, B., Marcos, M.: Supporting the refinement of clinical process models to computer-interpretable guideline models. Bus. Inf. Syst. Eng. 58(5), 355–366 (2016)CrossRefGoogle Scholar
  35. 35.
    Mulyar, N., van der Aalst, W.M., Peleg, M.: A pattern-based analysis of clinical computer-interpretable guideline modeling languages. J. Am. Med. Inform. Assoc. 14(6), 781–787 (2007)CrossRefGoogle Scholar
  36. 36.
    Munoz-Gama, J.: Conformance Checking and Diagnosis in Process Mining - Comparing Observed and Modeled Processes, vol. 270. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-319-49451-7CrossRefzbMATHGoogle Scholar
  37. 37.
    Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y.: EON: a component-based approach to automation of protocol-directed therapy. J. Am. Med. Inform. Assoc. 3(6), 367–388 (1996)CrossRefGoogle Scholar
  38. 38.
    Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inform. 46, 744–763 (2013)CrossRefGoogle Scholar
  39. 39.
    Peleg, M., González-Ferrer, A.: Guidelines and Workflow Models, chap. 16, 2nd edn, pp. 435–464. Academic Press, Oxford (2014)Google Scholar
  40. 40.
    Peleg, M., et al.: Comparing computer-interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc. 10, 52–68 (2003)CrossRefGoogle Scholar
  41. 41.
    Pesic, M., van der Aalst, W.M.P.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006).  https://doi.org/10.1007/11837862_18CrossRefGoogle Scholar
  42. 42.
    Qu, G., Liu, Z., Cui, S., Tang, J.: Study on self-adaptive clinical pathway decision support system based on case-based reasoning. In: Li, S., Jin, Q., Jiang, X., Park, J.J.J.H. (eds.) Frontier and Future Development of Information Technology in Medicine and Education. LNEE, vol. 269, pp. 969–978. Springer, Dordrecht (2014).  https://doi.org/10.1007/978-94-007-7618-0_95CrossRefGoogle Scholar
  43. 43.
    Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G., Fassino, C., Mossa, C.: Guideline-based careflow systems. Artif. Intell. Med. 20(1), 5–22 (2000)CrossRefGoogle Scholar
  44. 44.
    Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37, 99–116 (2012)CrossRefGoogle Scholar
  45. 45.
    Riaño, D., Collado, A.: Model-based combination of treatments for the management of chronic comorbid patients. In: Peek, N., Marín Morales, R., Peleg, M. (eds.) AIME 2013. LNCS (LNAI), vol. 7885, pp. 11–16. Springer, Heidelberg (2013).  https://doi.org/10.1007/978-3-642-38326-7_2CrossRefGoogle Scholar
  46. 46.
    Rojas, E., Munoz-Gama, J., Sepulveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)CrossRefGoogle Scholar
  47. 47.
    Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.: Declarative process mining in healthcare. Expert Syst. Appl. 42(23), 9236–9251 (2015)CrossRefGoogle Scholar
  48. 48.
    dos Santos Garcia, C., et al.: Process mining techniques and applications - a systematic mapping study. Expert Syst. Appl. 133, 260–295 (2019)CrossRefGoogle Scholar
  49. 49.
    Schadow, G., Russler, D.C., McDonald, C.J.: Conceptual alignment of electronic health record data with guideline and workflow knowledge. Int. J. Med. Inform. 64(2–3), 259–274 (2001)CrossRefGoogle Scholar
  50. 50.
    Shabo, A., Peleg, M., Parimbelli, E., Quaglini, S., Napolitano, C.: Interplay between clinical guidelines and organizational workflow systems. Experience from the MobiGuide project. Methods Inf. Med. 55(6), 488–494 (2016)CrossRefGoogle Scholar
  51. 51.
    Shahar, Y., Miksch, S., Johnson, P.: The Asgaard project: a task-specific framework for the application and critiquing of time-oriented clinical guidelines. Artif. Intell. Med. 14(1–2), 29–51 (1998)CrossRefGoogle Scholar
  52. 52.
    Sordo, M., Ogunyemi, O., Boxwala, A.A., Greenes, R.A.: GELLO: an object-oriented query and expression language for clinical decision support. In: AMIA Annual Symposium Proceedings, p. 1012 (2003)Google Scholar
  53. 53.
    Sox, H.C.: Conflict of interest in practice guidelines panels. JAMA 317(17), 1739–1740 (2017)CrossRefGoogle Scholar
  54. 54.
    Sutton, D.R., Fox, J.: The syntax and semantics of the PROforma guideline modeling language. J. Am. Med. Inform. Assoc. 10(5), 433–443 (2003)CrossRefGoogle Scholar
  55. 55.
    Terenziani, P., Molino, G., Torchio, M.: A modular approach for representing and executing clinical guidelines. Artif. Intell. Med. 23(3), 249–276 (2001)CrossRefGoogle Scholar
  56. 56.
    van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM framework: a new era in process mining tool support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005).  https://doi.org/10.1007/11494744_25CrossRefGoogle Scholar
  57. 57.
    Van de Velde, S., et al.: A systematic review of trials evaluating success factors of interventions with computerised clinical decision support. Implement. Sci. 13(1), 114 (2018)CrossRefGoogle Scholar
  58. 58.
    Wall, E.: Clinical practice guidelines–is “regulation” the answer? J. Am. Board Family Med. 29(6), 642–643 (2016)CrossRefGoogle Scholar
  59. 59.
    Wang, Z., Norris, S.L., Bero, L.: The advantages and limitations of guideline adaptation frameworks. Implement. Sci. 13(1), 72 (2018)CrossRefGoogle Scholar
  60. 60.
    Wilk, S., Michalowski, W., Michalowski, M., Farion, K., Hing, M.M., Mohapatra, S.: Mitigation of adverse interactions in pairs of clinical practice guidelines using constraint logic programming. J. Biomed. Inform. 46(2), 341–353 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze Cliniche e Sperimentali dell’Universitá degli Studi di BresciaBresciaItaly
  2. 2.School of Computing and EngineeringUniversity of HuddersfieldHuddersfieldUK
  3. 3.ITACAUniversitat Politécnica de ValénciaValénciaSpain
  4. 4.Fondazione Policlinico Universitario A. Gemelli IRCCSRomeItaly
  5. 5.Department of OncologyUniversity Hospital of LausanneLausanneSwitzerland
  6. 6.Norwegian Centre for E-health ResearchUniversity Hospital of North NorwayTromsøNorway
  7. 7.Dipartimento di Ingegneria dell’energia dei sistemi del territorio e delle costruzioniUniversita degli Studi di PisaPisaItaly
  8. 8.Alzheimer Operative UnitIRCCS Istituto Centro San Giovanni di Dio FatebenefratelliBresciaItaly
  9. 9.Pontificia Universidad Católica de ChileSantiago de ChileChile
  10. 10.Universitá di PaviaPaviaItaly
  11. 11.Department of Computer Engineering and ScienceUniversitat Jaume ICastelló de la PlanaSpain
  12. 12.Radiation Oncology DepartmentCentre Hospitalier Régional Universitaire Jean MinjozBesançonFrance

Personalised recommendations