Advertisement

Analysis and Optimization of a Sepsis Clinical Pathway Using Process Mining

  • Ricardo Alfredo Quintano NeiraEmail author
  • Bart Franciscus Antonius Hompes
  • J. Gert-Jan de Vries
  • Bruno F. Mazza
  • Samantha L. Simões de Almeida
  • Erin Stretton
  • Joos C. A. M. Buijs
  • Silvio Hamacher
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 362)

Abstract

In this work, we propose and apply a methodology for the management and optimization of clinical pathways using process mining. We adapt the Clinical Pathway Analysis Method (CPAM) by taking into consideration healthcare providers’ needs. We successfully applied the methodology in the sepsis treatment of a major Brazilian hospital. Using data extracted from the hospital information system, a total of 5,184 deviations in the execution of the sepsis clinical pathway were discovered and categorized in 43 different types. We identified the process as it was actually executed, two bottlenecks, and significant differences in performance in cases that deviated from the prescribed clinical pathway. Furthermore, factors such as patient age, gender, and type of infection were shown to affect performance. The analysis results were validated by an expert panel of clinical professionals and verified to provide valuable, actionable insights. Based on these insights, we were able to suggest optimization points in the sepsis clinical pathway.

Keywords

Clinical Pathways Sepsis Process analytics 

Notes

Acknowledgments

The authors thank A. Medeiros, D. Brizida Dreux, M. Santos, R. da Silva Santos, S. Barbosa, W.M.P. van der Aalst and all professionals involved from Hospital Samaritano and Philips for their help in the development of this research. This study was partly financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Conselho Nacional de Desenvolvimento Científico e Tecnológico - CNPq [grant numbers 140511/2018-0, 306802/2015-5, 403863/2016-3], and Philips Research.

References

  1. 1.
    van der Aalst, W.M.P.: Process Mining - Data Science in Action, 2nd edn. Springer, Heidelberg (2016).  https://doi.org/10.1007/978-3-662-49851-4CrossRefGoogle Scholar
  2. 2.
    Acampora, G., Vitiello, A., Di Stefano, B., van der Aalst, W.M.P., Günther, C.W., Verbeek, E.: IEEE 1849TM: The XES Standard. IEEE Comput. Intell. Mag., 4–8 (2017) Google Scholar
  3. 3.
    Augusto, V., Xie, X., Prodel, M., Jouaneton, B., Lamarsalle, L.: Evaluation of discovered clinical pathways using process mining and joint agent-based discrete-event simulation. In: Winter Simulation Conference, WSC 2016, Washington, DC, USA, pp. 2135–2146. IEEE (2016)Google Scholar
  4. 4.
    Baker, K., et al.: Process mining routinely collected electronic health records to define real-life clinical pathways during chemotherapy. I. J. Med. Inform. 103, 32–41 (2017)CrossRefGoogle Scholar
  5. 5.
    Caron, F., Vanthienen, J., Vanhaecht, K., Van Limbergen, E., Deweerdt, J., Baesens, B.: A process mining-based investigation of adverse events in care processes. Health Inf. Manag. J. 43(1), 16–25 (2014)Google Scholar
  6. 6.
    Carrillo-Esper, R., Carrillo-Cordova, J.R., Carrillo-Cordova, L.D.: Epidemiological study of sepsis in Mexican intensive care units. Cir. Cir. 77(4), 301–308 (2009)Google Scholar
  7. 7.
    Chalupka, A.N., Talmor, D.: The economics of sepsis. Criti. Care Clin. 28(1), 57–76 (2012)CrossRefGoogle Scholar
  8. 8.
    Chawla, A., Westrich, K., Matter, S., Kaltenboeck, A., Dubois, R.: Care pathways in US healthcare settings: current successes and limitations, and future challenges. Am. J. Manag. Care 22(1), 53–62 (2016)Google Scholar
  9. 9.
    CIHI: Canadian Institute for Health Information: In focus: A national look at sepsis (2009). https://secure.cihi.ca/estore/productFamily.htm?&pf=PFC1564
  10. 10.
    Dixit, P.M., Garcia Caballero, H.S., Corvò, A., Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: Enabling interactive process analysis with process mining and visual analytics. In: BIOSTEC: HEALTHINF, Porto, Portugal, vol. 5, pp. 573–584. SciTePress, February 2017Google Scholar
  11. 11.
    Fernandez-Llatas, C., et al.: Analyzing medical emergency processes with process mining: the stroke case. In: Daniel, F., Sheng, Q.Z., Motahari, H. (eds.) BPM 2018. LNBIP, vol. 342, pp. 214–225. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-11641-5_17CrossRefGoogle Scholar
  12. 12.
    Finfer, S., Bellomo, R., Lipman, J., French, C., Dobb, G., Myburgh, J.: Adult-population incidence of severe sepsis in Australian and New Zealand intensive care units. Intensive Care Med. 30(4), 589–596 (2004)CrossRefGoogle Scholar
  13. 13.
    Fujino, Y., et al.: Impact of regional clinical pathways on the length of stay in hospital among stroke patients in Japan. Med. Care 52(7), 634–640 (2014)CrossRefGoogle Scholar
  14. 14.
    Hompes, B.F.A., van der Aalst, W.M.P.: Lifecycle-based process performance analysis. In: Panetto, H., Debruyne, C., Proper, H., Ardagna, C., Roman, D., Meersman, R. (eds.) OTM 2018 Conferences. LNCS, vol. 11229, pp. 336–353. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-02610-3_19CrossRefGoogle Scholar
  15. 15.
    Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P.: A generic framework for context-aware process performance analysis. In: Debruyne, C., et al. (eds.) OTM 2016 Conferences. LNCS, vol. 10033, pp. 300–317. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-48472-3_17CrossRefGoogle Scholar
  16. 16.
    Hompes, B.F.A., Maaradji, A., La Rosa, M., Dumas, M., Buijs, J.C.A.M., van der Aalst, W.M.P.: Discovering causal factors explaining business process performance variation. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 177–192. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-59536-8_12CrossRefGoogle Scholar
  17. 17.
    Hompes, B., Dixit, P., Buijs, J.: Using process analytics to improve healthcare processes. Data Science for Healthcare: Methodologies and Applications, pp. 305–325. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-05249-2_12CrossRefGoogle Scholar
  18. 18.
    Hospital Samaritano, Com 125 anos de atividades, o Hospital Samaritano Higienópolis, destaca-se pela excelência e humanização no atendimento à saúde (2019). http://samaritano.com.br/institucional/institucional/
  19. 19.
    Khalifa, M., Alswailem, O.: Clinical pathways: identifying development, implementation and evaluation challenges. In: ICIMTH, pp. 131–134. IOS Press (2015)Google Scholar
  20. 20.
    Kumar, A., et al.: Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34(6), 1589–1596 (2006)CrossRefGoogle Scholar
  21. 21.
    Liao, X., Du, B., Lu, M., Wu, M., Kang, Y.: Current epidemiology of sepsis in mainland China. Ann. Transl. Med. 4(17), 324 (2016) CrossRefGoogle Scholar
  22. 22.
    Machado, F.R., et al.: The epidemiology of sepsis in Brazilian intensive care units (the Sepsis PREvalence Assessment Database, SPREAD): an observational study. Lancet Infect. Dis. 17(11), 1180–1189 (2017)CrossRefGoogle Scholar
  23. 23.
    Mans, R.S., van der Aalst, W.M.P., Vanwersch, R.J.B.: Process Mining in Healthcare - Evaluating and Exploiting Operational Healthcare Processes. SBPM. Springer, Cham (2015).  https://doi.org/10.1007/978-3-319-16071-9CrossRefGoogle Scholar
  24. 24.
    Palleschi, M.T., Sirianni, S., O’Connor, N., Dunn, D., Hasenau, S.M.: An interprofessional process to improve early identification and treatment for sepsis. J. Healthc. Qual. 36(4), 23–31 (2014)CrossRefGoogle Scholar
  25. 25.
    Panella, M., Marchisio, S., Di Stanislao, F.: Reducing clinical variations with clinical pathways: do pathways work? Int. J. Qual. Health Care 15(6), 509–521 (2003)CrossRefGoogle Scholar
  26. 26.
    Quintano Neira, R.A.: A multi-criteria process mining optimization tool and its application in a sepsis clinical pathway. Ph.D. thesis, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro (2018)Google Scholar
  27. 27.
    Quintano Neira, R.A., Hamacher, S., Japiassú, A.M.: Epidemiology of sepsis in Brazil: incidence, lethality, costs, and other indicators for Brazilian Unified Health System hospitalizations from 2006 to 2015. PLoS ONE 13(4), e0195873 (2018)CrossRefGoogle Scholar
  28. 28.
    Quintano Neira, R.A., de Vries, G., Caffarel, J., Stretton, E.: Extraction of data from a hospital information system to perform process mining. Stud. Health Technol. Inform. 245, 554–558 (2017)Google Scholar
  29. 29.
    Revista exame: Os hospitais brasileiros de excelência em 2014. https://exame.abril.com.br/seu-dinheiro/os-hospitais-brasileiros-de-excelencia-em-2014
  30. 30.
    Rodríguez, F., et al.: The epidemiology of sepsis in Colombia: a prospective multicenter cohort study in ten university hospitals. Crit. Care Med. 39(7), 1675–1682 (2011)CrossRefGoogle Scholar
  31. 31.
    Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016)CrossRefGoogle Scholar
  32. 32.
    Singer, M., et al.: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA 315(8), 801–810 (2016)CrossRefGoogle Scholar
  33. 33.
    Society of Critical Care Medicine: Surviving sepsis campaign. http://www.survivingsepsis.org
  34. 34.
    The EPISEPSIS Study Group: EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med. 30(4), 580–588 (2004)Google Scholar
  35. 35.
    Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)zbMATHGoogle Scholar
  36. 36.
    XES Working Group: IEEE Standard for eXtensible Event Stream (XES) for achieving interoperability in event logs and event streams. IEEE Std 1849-2016, pp. 1–50 (2016)Google Scholar
  37. 37.
    Yang, W., Su, Q.: Process mining for clinical pathway: literature review and future directions. In: 2014 11th International Conference on Service Systems and Service Management (ICSSSM), pp. 1–5 (2014)Google Scholar
  38. 38.
    Yoo, S., et al.: Assessment of hospital processes using a process mining technique: outpatient process analysis at a tertiary hospital. I. J. Med. Inform. 88, 34–43 (2016)CrossRefGoogle Scholar
  39. 39.
    Zhang, Y., Padman, R., Patel, N.: Paving the COWpath: learning and visualizing clinical pathways from electronic health record data. J. Biomed. Inform. 58, 186–197 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ricardo Alfredo Quintano Neira
    • 1
    • 2
    Email author
  • Bart Franciscus Antonius Hompes
    • 2
    • 3
  • J. Gert-Jan de Vries
    • 2
  • Bruno F. Mazza
    • 4
  • Samantha L. Simões de Almeida
    • 4
  • Erin Stretton
    • 2
  • Joos C. A. M. Buijs
    • 3
  • Silvio Hamacher
    • 1
  1. 1.Industrial Engineering DepartmentPontifícia Universidade Católica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Philips ResearchEindhovenThe Netherlands
  3. 3.Department of Mathematics and Computer ScienceEindhoven University of TechnologyEindhovenThe Netherlands
  4. 4.Hospital Samaritano de São PauloSão PauloBrazil

Personalised recommendations